228 research outputs found

    Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia

    Get PDF
    Carbonate-rich sedimentary rocks of the western Anabar region, northern Siberia, preserve an exceptional record of evolutionary and biogeochemical events near the Proterozoic/Cambrian boundary. Sedimentologically, the boundary succession can be divided into three sequences representing successive episodes of late transgressive to early highstand deposition; four parasequences are recognized in the sequence corresponding lithostratigraphically to the Manykai Formation. Small shelly fossils are abundant and include many taxa that also occur in standard sections of southeastern Siberia. Despite this coincidence of faunal elements, biostratigraphic correlations between the two regions have been controversial because numerous species that first appear at or immediately above the basal Tommotian boundary in southeastern sections have first appearances scattered through more than thirty metres of section in the western Anabar. Carbon- and Sr-isotopic data on petrographically and geochemically screened samples collected at one- to two-metre intervals in a section along the Kotuikan River, favour correlation of the Staraya Reckha Formation and most of the overlying Manykai Formation with sub-Tommotian carbonates in southeastern Siberia. In contrast, isotopic data suggest that the uppermost Manykai Formation and the basal 26 m of the unconformably overlying Medvezhya Formation may have no equivalent in the southeast; they appear to provide a sedimentary and palaeontological record of an evolutionarily significant time interval represented in southeastern Siberia only by the sub-Tommotian unconformity. Correlations with radiometrically dated horizons in the Olenek and Kharaulakh regions of northern Siberia suggest that this interval lasted approximately three to six million years, during which essentially all 'basal Tommotian' small shelly fossils evolved

    Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to Paleobiology

    Get PDF
    Abstract Micro-scale analytical techniques permit correlation of chemistry with morphology of individual Proterozoic acritarchs (organic-walled microfossils), and thus provide new approaches for elucidating their biological affinities. A combination of micro-Fourier transform infrared (FTIR) spectroscopy and laser micro-Raman spectroscopy was used to investigate the organic structure and composition of individual acritarchs. Well preserved Neoproterozoic acritarchs from the Tanana Formation, Australia (ca. 590-565 Ma), and Mesoproterozoic acritarchs from the Roper Group (1.5-1.4 Ga), Australia, and Ruyang Group, China (1.4-1.3 Ga, age poorly resolved but certainly >1000 Ma and <1625 Ma) have thermal maturities that range from immature to oil window. FTIR spectra of Tanarium conoideum from the Tanana Formation contain intense aliphatic C H stretching bands in the 2900 cm −1 region relative to the C C aromatic ring stretching band at 1600 cm −1 . This FTIR spectrum is consistent with the FTIR spectra obtained from algaenans isolated from extant chlorophyte and eustigmatophyte microalgae. FTIR spectra of Leiosphaeridia sp. from the Tanana Formation contain a less intense aliphatic C H stretching band relative to the C C aromatic ring stretching band. By comparison, the spectra acquired from the Mesoproterozoic acritarchs were dominated by C C aromatic ring stretching bands at 1600 cm −1 relative to moderate-weak CH 3 terminal groups (1345 cm −1 ), C H aliphatic stretching (3000-2700 cm −1 ), and C O (1710 cm −1 ), although some differences in biopolymer composition occurred between species. Curve-fitting of the aliphatic C H x stretching region provides greater insight into the aliphatic structures of the acritarchs. The CH 2 /CH 3 intensity ratio can be used to assess the relative chain length and degree of branching. Organic material in the Tanarium conoideum consists of straight long chain hydrocarbons, while the other acritarchs contain hydrocarbons consisting of short chains that are highly branched. In this study it was found that Raman spectroscopy does not provide additional information about biopolymer composition of Proterozoic acritarchs, but rather offers complementary data regarding the aromaticity and degree of saturation of the macromolecular structure of acritarch cysts
    • …
    corecore