3 research outputs found

    Emergency management and asthma risk in young Medicaid-enrolled children with recurrent wheeze

    No full text
    To describe clinical characteristics of young children presenting to the emergency department (ED) for early recurrent wheeze, and determine factors associated with subsequent persistent wheeze and risk for early childhood asthma. Retrospective cohort study of Medicaid-enrolled children 0–3 years old with an index ED visit for wheeze (e.g. bronchiolitis, reactive airway disease) from 2009 to 2013, and at least one prior documented episode of wheeze at an ED or primary care visit. The primary outcome was persistent wheeze between 4 and 6 years of age. Demographics and clinical characteristics were collected from the index ED visit. Logistic regression was used to estimate the association between potential risk factors and subsequent persistent wheeze. During the study period, 41,710 children presented to the ED for recurrent wheeze. Mean age was 1.3 years; 59% were male, 42% Black, and 6% Hispanic. At index ED visits, the most common diagnosis was acute bronchiolitis (40%); 77% of children received an oral corticosteroid prescription. Between 4 and 6 years of age, 11,708 (28%) children had persistent wheeze. A greater number of wheezing episodes was associated with an increased odds of ED treatment with asthma medications. Subsequent persistent wheeze was associated with male sex, Black race, atopy, prescription for bronchodilators or corticosteroids, and greater number of visits for wheeze. Young children with persistent wheeze are at risk for childhood asthma. Thus, identification of risk factors associated with persistent wheeze in young children with recurrent wheeze might aid in early detection of asthma and initiation of preventative therapies.</p

    Additional file 1 of African-specific alleles modify risk for asthma at the 17q12-q21 locus in African Americans

    No full text
    Additional file 1. Contains Supplementary Methods, Supplementary Tables (Table S1-10), and Supplementary Figures (Fig. S1-14), and corresponding references. Supplementary Methods. Descriptions of Populations. Building Consensus Sequences in the Critical Region. Table S1. Characteristics of the APIC and URECA Cohorts. Table S2. Predicted Haplotypes in CREW. Table S3. Haplotype Frequencies in Whole Genome Sequences. Table S4. Worldwide Frequencies of African-specific SNPs. Table S5. cis-eQTL Results for SNPs in or near GSDMA. Table S6. ENCODE Cell Lines and DNAse Clustering at pcHi-C Region. Table S7. pcHi-C Target Genes for African-specific Variants in Airway Epithelial Cells. Table S8. pcHi-C Target Genes for African-specific Variants in Airway Immune Cells. Table S9. Quantitative Trait Association Results in the APIC and URECA Cohorts. Table S10. African American Adult Asthmatics by Severity and Genotype. Figure S1. Overview of Study Design. Figure S2. ChromoPainter Analysis. Figure S3. ChromoPainter Visualization of Haplotype Breakpoints. Figure S4. ChromoPainter Display of the 17q12-q21 Region in Haplotype 4 Homozygotes. Figure S5. Ancestry PCA plots for APIC and URECA Children. Figure S6. eQTL Box Plots of rs28623237 Genotype and GSDMA Expression in CAAPA2. Figure S7. LD Plot of African-specific Variants and SNPs in or near GSDMA. Figure S8. eQTL Box Plots of rs113282230 Genotype and GSDMA Expression Conditioned on GSDMA SNPs. Figure S9. eQTL Violin Plots of rs235480 and rs1132828830 Genotypes on GSDMA and GSDMB Expression. Figure S10. LD Plot of the African-specific Variants and SNPs in the Core Region of The 17q12-q21 Locus. Figure S11. Chromatin Annotations in the Region Encoding the African-specific SNPs in ENCODE Cell Lines. Figure S12. eGenes for rs113282230 in Immune Cells. Figure S13. pcHi-C Data for rs113282230 in Immune Cells. Figure S14. Rs113282230 Genotype Effect on Asthma Prevalence by rs2305480 AA And GG Genotypes in APIC and URECA
    corecore