2 research outputs found
NGTS-1b: A hot Jupiter transiting an M-dwarf
We present the discovery of NGTS-1b, a hot-Jupiter transiting an early M-dwarf host (Teff,∗=3916 +71 −63 K) in a P = 2.647 d orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of 0.812 +0.066 −0.075 MJ making it the most massive planet ever discovered transiting an M-dwarf. The radius of the planet is 1.33 +0.61 −0.33 RJ . Since the transit is grazing, we determine this radius by modelling the data and placing a prior on the density from the population of known gas giant planets. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar type stars. The host star shows no signs of activity, and the kinematics hint at the star being from the thick disk population. With a deep (2.5%) transit around a K = 11.9 host, NGTS-1b will be a strong candidate to probe giant planet composition around M-dwarfs via JWST transmission spectroscop
NGTS clusters survey -- II. White-light flares from the youngest stars in Orion
We present the detection of high energy white-light flares from pre-main sequence stars associated with the Orion complex, observed as part of the Next Generation Transit Survey (NGTS). With energies up to 5.2 × 1035 erg these flares are some of the most energetic white-light flare events seen to date. We have used the NGTS observations of flaring and non-flaring stars to measure the average flare occurrence rate for 4 Myr M0-M3 stars. We have also combined our results with those from previous studies to predict average rates for flares above 1 × 1035 ergs for early M stars in nearby young associations