5 research outputs found

    A Simple, Scalable Synthetic Route to (+)- and (−)-Pseudoephenamine

    No full text
    A three-step synthesis of pseudoephenamine suitable for preparing multigram amounts of both enantiomers of the auxiliary from the inexpensive starting material benzil is described. The sequence involves synthesis of the crystalline monomethylimine derivative of benzil, reduction of that substance with lithium aluminum hydride, and resolution of pseudoephenamine with mandelic acid

    Diastereoselective Additions of Allylmetal Reagents to Free and Protected <i>syn</i>-<b>α,β</b>-Dihydroxyketones Enable Efficient Synthetic Routes to Methyl Trioxacarcinoside A

    No full text
    Two routes to the 2,6-dideoxysugar methyl trioxacarcinoside A are described. Each was enabled by an apparent α-chelation-controlled addition of an allylmetal reagent to a ketone substrate containing a free α-hydroxyl group and a β-hydroxyl substituent, either free or protected as the corresponding di-<i>tert</i>-butylmethyl silyl ether. Both routes provide practical access to gram quantities of trioxacarcinose A in a form suitable for glycosidic coupling reactions

    Synthesis of Quaternary α‑Methyl α‑Amino Acids by Asymmetric Alkylation of Pseudoephenamine Alaninamide Pivaldimine

    No full text
    The utility of pseudoephenamine as a chiral auxiliary for the alkylative construction of quaternary α-methyl α-amino acids is demonstrated. The method is notable for the high diastereoselectivities of the alkylation reactions, for its versatility with respect to electrophilic substrate partners, and for its mild hydrolysis conditions, which provide α-amino acids without salt contaminants. Alternatively, α-amino esters can be obtained by direct alcoholysis

    [3+2] Dipolar Cycloaddition of a Stabilized Azomethine Ylide and an Electron-Deficient Dipolarophile: Revision of Regioselectivity

    No full text
    The regioselectivity of a [3+2] dipolar cycloaddition reaction of a stabilized azomethine ylide with an electron-deficient dipolarophile was found to be counter to a report published in this journal

    Interactions of the Natural Product (+)-Avrainvillamide with Nucleophosmin and Exportin‑1 Mediate the Cellular Localization of Nucleophosmin and its AML-Associated Mutants

    No full text
    Nucleophosmin (NPM1) is a multifunctional phosphoprotein localized predominantly within the nucleoli of eukaryotic cells. Mutations within its C-terminal domain are frequently observed in patients with acute myeloid leukemia (AML), are thought to play a key role in the initiation of the disease, and result in aberrant, cytoplasmic localization of the mutant protein. We have previously shown that the electrophilic antiproliferative natural product (+)-avrainvillamide (<b>1</b>) binds to proteins, including nucleophosmin, by <i>S</i>-alkylation of cysteine residues. Here, we report that avrainvillamide restores nucleolar localization of certain AML-associated mutant forms of NPM1 and provide evidence that this relocalization is mediated by interactions of avrainvillamide with mutant NPM1 and exportin-1 (Crm1). Immunofluorescence and mass spectrometric experiments employing a series of different NPM1 constructs suggest that a specific interaction between avrainvillamide and Cys275 of certain NPM1 mutants mediates the relocalization of these proteins to the nucleolus. Avrainvillamide treatment is also shown to inhibit nuclear export of Crm1 cargo proteins, including AML-associated NPM1 mutants. We also observe that avrainvillamide treatment displaces Thr199-phosphorylated NPM1 from duplicated centrosomes, leads to an accumulation of supernumerary centrosomes, and inhibits dephosphorylation of Thr199-phosphorylated NPM1 by protein phosphatase 1. Avrainvillamide is the first small molecule reported to relocalize specific cytoplasmic AML-associated NPM1 mutants to the nucleolus, providing an important demonstration of principle that small molecule induction of a wild-type NPM1 localization phenotype is feasible in certain human cancer cells
    corecore