5 research outputs found
Low-Energy Dynamics of String Solitons
The dynamics of a class of fivebrane string solitons is considered in the
moduli space approximation. The metric on moduli space is found to be flat.
This implies that at low energies the solitons do not interact, and their
scattering is trivial. The range of validity of the approximation is also
briefly discussed.Comment: 8 pages, Minor typos correcte
Critical Theories of the Dissipative Hofstadter Model
It has recently been shown that the dissipative Hofstadter model (dissipative
quantum mechanics of an electron subject to uniform magnetic field and periodic
potential in two dimensions) exhibits critical behavior on a network of lines
in the dissipation/magnetic field plane. Apart from their obvious condensed
matter interest, the corresponding critical theories represent non-trivial
solutions of open string field theory, and a detailed account of their
properties would be interesting from several points of view. A subject of
particular interest is the dependence of physical quantities on the magnetic
field since it, much like , serves only to give relative
phases to different sectors of the partition sum. In this paper we report the
results of an initial investigation of the free energy, -point functions and
boundary state of this type of critical theory. Although our primary goal is
the study of the magnetic field dependence of these quantities, we will present
some new results which bear on the zero magnetic field case as well.Comment: 42 pages (25 reduced
HLA-E-restricted SARS-CoV-2-specific T cells from convalescent COVID-19 patients suppress virus replication despite HLA class Ia down-regulation
Pathogen-specific CD8+ T cell responses restricted by the nonpolymorphic nonclassical class Ib molecule human leukocyte antigen E (HLA-E) are rarely reported in viral infections. The natural HLA-E ligand is a signal peptide derived from classical class Ia HLA molecules that interact with the NKG2/CD94 receptors to regulate natural killer cell functions, but pathogen-derived peptides can also be presented by HLA-E. Here, we describe five peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that elicited HLA-E–restricted CD8+ T cell responses in convalescent patients with coronavirus disease 2019. These T cell responses were identified in the blood at frequencies similar to those reported for classical HLA-Ia–restricted anti–SARS-CoV-2 CD8+ T cells. HLA-E peptide–specific CD8+ T cell clones, which expressed diverse T cell receptors, suppressed SARS-CoV-2 replication in Calu-3 human lung epithelial cells. SARS-CoV-2 infection markedly down-regulated classical HLA class I expression in Calu-3 cells and primary reconstituted human airway epithelial cells, whereas HLA-E expression was not affected, enabling T cell recognition. Thus, HLA-E–restricted T cells could contribute to the control of SARS-CoV-2 infection alongside classical T cells
HLA-E-restricted SARS-CoV-2-specific T cells from convalescent COVID-19 patients suppress virus replication despite HLA class Ia down-regulation
Pathogen-specific CD8+ T cell responses restricted by the nonpolymorphic nonclassical class Ib molecule human leukocyte antigen E (HLA-E) are rarely reported in viral infections. The natural HLA-E ligand is a signal peptide derived from classical class Ia HLA molecules that interact with the NKG2/CD94 receptors to regulate natural killer cell functions, but pathogen-derived peptides can also be presented by HLA-E. Here, we describe five peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that elicited HLA-E-restricted CD8+ T cell responses in convalescent patients with coronavirus disease 2019. These T cell responses were identified in the blood at frequencies similar to those reported for classical HLA-Ia-restricted anti-SARS-CoV-2 CD8+ T cells. HLA-E peptide-specific CD8+ T cell clones, which expressed diverse T cell receptors, suppressed SARS-CoV-2 replication in Calu-3 human lung epithelial cells. SARS-CoV-2 infection markedly down-regulated classical HLA class I expression in Calu-3 cells and primary reconstituted human airway epithelial cells, whereas HLA-E expression was not affected, enabling T cell recognition. Thus, HLA-E-restricted T cells could contribute to the control of SARS-CoV-2 infection alongside classical T cells