522 research outputs found

    Rejoinder: Struggles with survey weighting and regression modeling

    Get PDF
    I was motivated to write this paper, with its controversial opening line, "Survey weighting is a mess," from various experiences as an applied statistician

    Fully Bayesian computing

    Get PDF
    A fully Bayesian computing environment calls for the possibility of defining vector and array objects that may contain both random and deterministic quantities, and syntax rules that allow treating these objects much like any variables or numeric arrays. Working within the statistical package R, we introduce a new object-oriented framework based on a new random variable data type that is implicitly represented by simulations. We seek to be able to manipulate random variables and posterior simulation objects conveniently and transparently and provide a basis for further development of methods and functions that can access these objects directly. We illustrate the use of this new programming environment with several examples of Bayesian computing, including posterior predictive checking and the manipulation of posterior simulations. This new environment is fully Bayesian in that the posterior simulations can be handled directly as random variables

    Sampling for Bayesian computation with large datasets

    Get PDF
    Multilevel models are extremely useful in handling large hierarchical datasets. However, computation can be a challenge, both in storage and CPU time per iteration of Gibbs sampler or other Markov chain Monte Carlo algorithms. We propose a computational strategy based on sampling the data, computing separate posterior distributions based on each sample, and then combining these to get a consensus posterior inference. With hierarchical data structures, we perform cluster sampling into subsets with the same structures as the original data. This reduces the number of parameters as well as sample size for each separate model fit. We illustrate with examples from climate modeling and newspaper marketing
    • …
    corecore