2,778 research outputs found

    Measurement of the Nodal Precession of WASP-33 b via Doppler Tomography

    Get PDF
    We have analyzed new and archival time series spectra taken six years apart during transits of the hot Jupiter WASP-33 b, and spectroscopically resolved the line profile perturbation caused by the Rossiter-McLaughlin effect. The motion of this line profile perturbation is determined by the path of the planet across the stellar disk, which we show to have changed between the two epochs due to nodal precession of the planetary orbit. We measured rates of change of the impact parameter and the sky-projected spin-orbit misalignment of db/dt=−0.0228−0.0018+0.0050db/dt=-0.0228_{-0.0018}^{+0.0050} yr−1^{-1} and dλ/dt=−0.487−0.076+0.089d\lambda/dt=-0.487_{-0.076}^{+0.089}~∘^{\circ} yr−1^{-1}, respectively, corresponding to a rate of nodal precession of dΩ/dt=0.373−0.083+0.031d\Omega/dt=0.373_{-0.083}^{+0.031}~∘^{\circ} yr−1^{-1}. This is only the second measurement of nodal precession for a confirmed exoplanet transiting a single star. Finally, we used the rate of precession to set limits on the stellar gravitational quadrupole moment of 9.4×10−5<J2<6.1×10−49.4\times10^{-5}<J_2<6.1\times10^{-4}.Comment: Published in ApJL. 5 pages, 3 figures. Corrected error in the calculation of J_

    The Sea Urchin Genome as a Window on Function

    Get PDF
    The emphasis on the sequencing of genomes seems to make this task an end in itself. However, genome sequences and the genes that are predicted from them are really an opportunity to examine the biological function of the organism constructed by that genome. This point is illustrated here by examples in which the newly annotated gene complement reveals surprises about the way Strongylocentrotus purpuratus, the purple sea urchin, goes about its business. The three topics considered here are the nature of the innate immune system; the unexpected complexity of sensory function implied by genes encoding sensory proteins; and the remarkable intricacy of the regulatory gene complement in embryogenesis

    A Kepler study of starspot lifetimes with respect to light-curve amplitude and spectral type

    Get PDF
    ACC acknowledges support from STFC consolidated grant number ST/M001296/1. RDH gratefully acknowledges support from STFC studentship grant ST/J500744/1, a grant from the John Templeton Foundation, and NASA XRP grant NNX15AC90G.Wide-field high-precision photometric surveys such as Kepler have produced reams of data suitable for investigating stellar magnetic activity of cooler stars. Starspot activity produces quasi-sinusoidal light curves whose phase and amplitude vary as active regions grow and decay over time. Here we investigate, first, whether there is a correlation between the size of starspots - assumed to be related to the amplitude of the sinusoid - and their decay time-scale and, secondly, whether any such correlation depends on the stellar effective temperature. To determine this, we computed the auto-correlation functions of the light curves of samples of stars from Kepler and fitted them with apodised periodic functions. The light-curve amplitudes,representing spot size, were measured from the root-mean-squared scatter of the normalized light curves. We used a Monte Carlo Markov Chain to measure the periods and decay time-scales of the light curves. The results show a correlation between the decay time of starspots and their inferred size. The decay time also depends strongly on the temperature of the star. Cooler stars have spots that last much longer, in particular for stars with longer rotational periods. This is consistent with current theories of diffusive mechanisms causing starspot decay. We also find that the Sun is not unusually quiet for its spectral type -stars with solar-type rotation periods and temperatures tend to have(comparatively) smaller starspots than stars with mid-G or later spectral types.Publisher PDFPeer reviewe

    Paircomp, FamilyRelationsII and Cartwheel: tools for interspecific sequence comparison

    Get PDF
    BACKGROUND: Comparative sequence analysis is an effective and increasingly common way to identify cis-regulatory regions in animal genomes. RESULTS: We describe three tools for comparative analysis of pairs of BAC-sized genomic regions. Paircomp is a tool that does windowed (ungapped) comparisons of two sequences and reports all matches above a set threshold. FamilyRelationsII is a graphical viewer for comparisons that enables interactive exploration of several different kinds of comparisons. Cartwheel is a Web site and compute-cluster management system used to execute and store comparisons for display by FamilyRelationsII. These tools are specialized for the discovery of cis-regulatory regions in animal genomes. All tools and their source code are freely available at . CONCLUSION: These tools have been shown to effectively identify regulatory regions in echinoderms, mammals, and nematodes

    The On/Off Nature of Star-Planet Interactions

    Full text link
    Evidence suggesting an observable magnetic interaction between a star and its hot Jupiter appears as a cyclic variation of stellar activity synchronized to the planet's orbit. In this study, we monitored the chromospheric activity of 7 stars with hot Jupiters using new high-resolution echelle spectra collected with ESPaDOnS over a few nights in 2005 and 2006 from the CFHT. We searched for variability in several stellar activity indicators (Ca II H, K, the Ca II infrared triplet, Halpha, and He I). HD 179949 has been observed almost every year since 2001. Synchronicity of the Ca II H & K emission with the orbit is clearly seen in four out of six epochs, while rotational modulation with P_rot=7 days is apparent in the other two seasons. We observe a similar phenomenon on upsilon And, which displays rotational modulation (P_rot=12 days) in September 2005, in 2002 and 2003 variations appear to correlate with the planet's orbital period. This on/off nature of star-planet interaction (SPI) in the two systems is likely a function of the changing stellar magnetic field structure throughout its activity cycle. Variability in the transiting system HD 189733 is likely associated with an active region rotating with the star, however, the flaring in excess of the rotational modulation may be associated with its hot Jupiter. As for HD 179949, the peak variability as measured by the mean absolute deviation for both HD 189733 and tau Boo leads the sub-planetary longitude by 70 degrees. The tentative correlation between this activity and the ratio of Mpsini to the planet's rotation period, a quantity proportional to the hot Jupiter's magnetic moment, first presented in Shkolnik et al. 2005 remains viable. This work furthers the characterization of SPI, improving its potential as a probe of extrasolar planetary magnetic fields.Comment: Accepted for publication in the Astrophysical Journa

    Do echinoderm genomes measure up?

    Get PDF
    Echinoderm genome sequences are a corpus of useful information about a clade of animals that serve as research models in fields ranging from marine ecology to cell and developmental biology. Genomic information from echinoids has contributed to insights into the gene interactions that drive the developmental process at the molecular level. Such insights often rely heavily on genomic information and the kinds of questions that can be asked thus depend on the quality of the sequence information. Here we describe the history of echinoderm genomic sequence assembly and present details about the quality of the data obtained. All of the sequence information discussed here is posted on the echinoderm information web system, Echinobase.org

    Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis

    Get PDF
    A comprehensive transcriptome analysis has been performed on protein-coding RNAs of Strongylocentrotus purpuratus, including 10 different embryonic stages, six feeding larval and metamorphosed juvenile stages, and six adult tissues. In this study, we pooled the transcriptomes from all of these sources and focused on the insights they provide for gene structure in the genome of this recently sequenced model system. The genome had initially been annotated by use of computational gene model prediction algorithms. A large fraction of these predicted genes were recovered in the transcriptome when the reads were mapped to the genome and appropriately filtered and analyzed. However, in a manually curated subset, we discovered that more than half the computational gene model predictions were imperfect, containing errors such as missing exons, prediction of nonexistent exons, erroneous intron/exon boundaries, fusion of adjacent genes, and prediction of multiple genes from single genes. The transcriptome data have been used to provide a systematic upgrade of the gene model predictions throughout the genome, very greatly improving the research usability of the genomic sequence. We have constructed new public databases that incorporate information from the transcriptome analyses. The transcript-based gene model data were used to define average structural parameters for S. purpuratus protein-coding genes. In addition, we constructed a custom sea urchin gene ontology, and assigned about 7000 different annotated transcripts to 24 functional classes. Strong correlations became evident between given functional ontology classes and structural properties, including gene size, exon number, and exon and intron size
    • …
    corecore