8 research outputs found

    Qualitative Multiplatform Microanalysis of Individual Heterogeneous Atmospheric Particles from High-Volume Air Samples

    No full text
    High-resolution microscopic analysis of individual atmospheric particles can be difficult, because the filters upon which particles are captured are often not suitable as substrates for microscopic analysis. Described here is a multiplatform approach for microscopically assessing chemical and optical properties of individual heterogeneous urban dust particles captured on fibrous filters during high-volume air sampling. First, particles embedded in fibrous filters are transferred to polished silicon or germanium wafers with electrostatically assisted high-speed centrifugation. Particles are clustered in an array of deposit areas, which allows for easily locating the same particle with different microscopy instruments. Second, particles with light-absorbing and/or light-scattering behavior are identified for further study from bright-field and dark-field light-microscopy modes, respectively. Third, particles identified from light microscopy are compositionally mapped at high definition with field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. Fourth, compositionally mapped particles are further analyzed with focused ion-beam (FIB) tomography, whereby a series of thin slices from a particle are imaged, and the resulting image stack is used to construct a three-dimensional model of the particle. Finally, particle chemistry is assessed over two distinct regions of a thin FIB slice of a particle with energy-filtered transmission electron microscopy (TEM) and electron energy-loss spectroscopy associated with scanning transmission electron microscopy (STEM)

    Visualization of Phase Evolution in Model Organic Photovoltaic Structures <i>via</i> Energy-Filtered Transmission Electron Microscopy

    No full text
    The morphology of the active layer in an organic photovoltaic bulk-heterojunction device is controlled by the extent and nature of phase separation during processing. We have studied the effects of fullerene crystallinity during heat treatment in model structures consisting of a layer of poly(3-hexylthiophene) (P3HT) sandwiched between two layers of [6,6]-phenyl-C<sub>61</sub>-butyric acid methyl ester (PCBM). Utilizing a combination of focused ion-beam milling and energy-filtered transmission electron microscopy, we monitored the <i>local</i> changes in phase distribution as a function of annealing time at 140 °C. In both cases, dissolution of PCBM within the surrounding P3HT was directly visualized and quantitatively described. In the absence of crystalline PCBM, the overall phase distribution remained stable after intermediate annealing times up to 60 s, whereas microscale PCBM aggregates were observed after annealing for 300 s. Aggregate growth proceeded vertically from the substrate interface <i>via</i> uptake of PCBM from the surrounding region, resulting in a large PCBM-depleted region in their vicinity. When precrystallized PCBM was present, amorphous PCBM was observed to segregate from the intermediate P3HT layer and ripen the crystalline PCBM underneath, owing to the far lower solubility of crystalline PCBM within P3HT. This process occurred rapidly, with segregation already evident after annealing for 10 s and with uptake of nearly all of the amorphous PCBM by the crystalline layer after 60 s. No microscale aggregates were observed in the precrystallized system, even after annealing for 300 s

    Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas

    No full text
    We have produced large numbers of hybrid metal–semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden <i>gap-localized transverse</i> mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance <i>via</i> active modulation of the gap material’s optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek

    Multimodal Characterization of the Morphology and Functional Interfaces in Composite Electrodes for Li–S Batteries by Li Ion and Electron Beams

    No full text
    We report the characterization of multiscale 3D structural architectures of novel poly­[sulfur-<i>random</i>-(1,3-diisopropenylbenzene)] copolymer-based cathodes for high-energy-density Li–S batteries capable of realizing discharge capacities >1000 mAh/g and long cycling lifetimes >500 cycles. Hierarchical morphologies and interfacial structures have been investigated by a combination of focused Li ion beam (LiFIB) and analytical electron microscopy in relation to the electrochemical performance and physicomechanical stability of the cathodes. Charge-free surface topography and composition-sensitive imaging of the electrodes was performed using recently introduced low-energy scanning LiFIB with Li<sup>+</sup> probe sizes of a few tens of nanometers at 5 keV energy and 1 pA probe current. Furthermore, we demonstrate that LiFIB has the ability to inject a certain number of Li cations into the material with nanoscale precision, potentially enabling control of the state of discharge in the selected area. We show that chemical modification of the cathodes by replacing the elemental sulfur with organosulfur copolymers significantly improves its structural integrity and compositional homogeneity down to the sub-5-nm length scale, resulting in the creation of (a) robust functional interfaces and percolated conductive pathways involving graphitic-like outer shells of aggregated nanocarbons and (b) extended micro- and mesoscale porosities required for effective ion transport

    Transient Thermometry and High-Resolution Transmission Electron Microscopy Analysis of Filamentary Resistive Switches

    No full text
    We present data on the filament size and temperature distribution in Hf<sub>0.82</sub>Al<sub>0.18</sub>O<sub><i>x</i></sub>-based Resistive Random Access Memory (RRAM) devices obtained by transient thermometry and high-resolution transmission electron microscopy (HRTEM). The thermometry shows that the temperature of the nonvolatile conducting filament can reach temperatures as high as 1600 K at the onset of RESET at voltage of 0.8 V and power of 40 μW. The size of the filament was estimated at about 1 nm in diameter. Hot filament increases the temperature of the surrounding high resistivity oxide, causing it to conduct and carry a significant fraction of the total current. The current spreading results in slowing down the filament temperature increase at higher power. The results of thermometry have been corroborated by HRTEM analysis of the as-fabricated and switched RRAM devices. The functional HfAlO<sub><i>x</i></sub> layer in as-fabricated devices is amorphous. In devices that were switched, we detected a small crystalline region of 10–15 nm in size. The crystallization temperature of the HfAlO<sub><i>x</i></sub> was determined to be 850 K in an independent annealing experiment. The size of the crystalline region agrees with thermal modeling based on the thermometry data. Scanning transmission electron microscopy (TEM) coordinated with electron energy loss spectroscopy could not detect changes in the chemical makeup of the filament

    Formation of the Conducting Filament in TaO<sub><i>x</i></sub>‑Resistive Switching Devices by Thermal-Gradient-Induced Cation Accumulation

    No full text
    The distribution of tantalum and oxygen ions in electroformed and/or switched TaO<sub><i>x</i></sub>-based resistive switching devices has been assessed by high-angle annular dark-field microscopy, X-ray energy-dispersive spectroscopy, and electron energy-loss spectroscopy. The experiments have been performed in the plan-view geometry on the cross-bar devices producing elemental distribution maps in the direction perpendicular to the electric field. The maps revealed an accumulation of +20% Ta in the inner part of the filament with a 3.5% Ta-depleted ring around it. The diameter of the entire structure was approximately 100 nm. The distribution of oxygen was uniform with changes, if any, below the detection limit of 5%. We interpret the elemental segregation as due to diffusion driven by the temperature gradient, which in turn is induced by the spontaneous current constriction associated with the negative differential resistance-type <i>I</i>–<i>V</i> characteristics of the as-fabricated metal/oxide/metal structures. A finite-element model was used to evaluate the distribution of temperature in the devices and correlated with the elemental maps. In addition, a fine-scale (∼5 nm) intensity contrast was observed within the filament and interpreted as due phase separation of the functional oxide in the two-phase composition region. Understanding the temperature-gradient-induced phenomena is central to the engineering of oxide memory cells

    In Situ X‑ray Scattering Studies of the Influence of an Additive on the Formation of a Low-Bandgap Bulk Heterojunction

    No full text
    The evolution of the morphology of a high-efficiency, blade-coated, organic-photovoltaic (OPV) active layer containing the low band gap polymer poly­[(4,8-bis­[5-(2-ethylhexyl)­thiophene-2-yl]­benzo­[1,2-b:4,5-b′]­dithiophene)-2,6-diyl-<i>alt</i>-(4-(2-ethylhexanoyl)-thieno­[3,4-<i>b</i>]­thiophene))-2,6-diyl] (PBDTTT-C-T) is examined by in situ X-ray scattering. In situ studies enable real-time characterization of the effect of the processing additive 1,8-diiodoocatane (DIO) on the active layer morphology. In the presence of DIO, X-ray scattering indicates that domain structure radically changes and increases in purity, while X-ray diffraction reveals little change in crystallinity/local order. The solidification behavior of this active layer differs dramatically from those that strongly crystallize such as poly­(3-hexylthiophene) and small molecule containing systems, exposing significant diversity in the solidification routes relevant to high-efficiency polymer–fullerene OPV processing. In the presence of DIO, we find quantitative agreement between the evolution of the phase structure revealed by small-angle X-ray scattering and the binodal phase structure of a simple Flory–Huggins model

    Comparing Matched Polymer:Fullerene Solar Cells Made by Solution-Sequential Processing and Traditional Blend Casting: Nanoscale Structure and Device Performance

    No full text
    Polymer:fullerene bulk heterojunction (BHJ) solar cell active layers can be created by traditional blend casting (BC), where the components are mixed together in solution before deposition, or by sequential processing (SqP), where the pure polymer and fullerene materials are cast sequentially from different solutions. Presently, however, the relative merits of SqP as compared to BC are not fully understood because there has yet to be an equivalent (composition- and thickness-matched layer) comparison between the two processing techniques. The main reason why matched SqP and BC devices have not been compared is because the composition of SqP active layers has not been accurately known. In this paper, we present a novel technique for accurately measuring the polymer:fullerene film composition in SqP active layers, which allows us to make the first comparisons between rigorously composition- and thickness-matched BHJ organic solar cells made by SqP and traditional BC. We discover that, in optimal photovoltaic devices, SqP active layers have a very similar composition as their optimized BC counterparts (≈44–50 mass % PCBM). We then present a thorough investigation of the morphological and device properties of thickness- and composition-matched P3HT:PCBM SqP and BC active layers in order to better understand the advantages and drawbacks of both processing approaches. For our matched devices, we find that small-area SqP cells perform better than BC cells due to both superior film quality and enhanced optical absorption from more crystalline P3HT. The enhanced film quality of SqP active layers also results in higher performance and significantly better reproducibility in larger-area devices, indicating that SqP is more amenable to scaling than the traditional BC approach. X-ray diffraction, UV–vis absorption, and energy-filtered transmission electron tomography collectively show that annealed SqP active layers have a finer-scale blend morphology and more crystalline polymer and fullerene domains when compared to equivalently processed BC active layers. Charge extraction by linearly increasing voltage (CELIV) measurements, combined with X-ray photoelectron spectroscopy, also show that the top (nonsubstrate) interface for SqP films is slightly richer in PCBM compared to matched BC active layers. Despite these clear differences in bulk and vertical morphology, transient photovoltage, transient photocurrent, and subgap external quantum efficiency measurements all indicate that the interfacial electronic processes occurring at P3HT:PCBM heterojunctions are essentially identical in matched-annealed SqP and BC active layers, suggesting that device physics are surprisingly robust with respect to the details of the BHJ morphology
    corecore