63,828 research outputs found
Update on the Measurement of alpha_S with a 500 GeV Linear Collider
An update on the prospects for the precise measurement of the strong coupling
constant alpha_S at a high energy Linear Collider via the three-jet rate is
presented. In particular, the issue of the distribution of center-of-mass
energies of the identified q-qbar event sample, which can affect the
determination of \alpha_S at the scale Q^2=(500 GeV)^2$, is addressed.Comment: 4 pages, 3 figures, LaTex, requires epsfig and aipproc macro
Einstein metrics on tangent bundles of spheres
We give an elementary treatment of the existence of complete Kahler-Einstein
metrics with nonpositive Einstein constant and underlying manifold
diffeomorphic to the tangent bundle of the (n+1)-sphere.Comment: 9 page
Comparison of CâC bond hydrogenation in C-4 unsaturated nitriles over Pt/alumina
The hydrogenation of allyl cyanide (but-1-ene-4-nitrile, AC), trans- and cis-crotononitrile (E- and Z-but-2-ene nitrile, TCN and CCN), and methacrylonitrile (2-cyano-1-propene, MCN) were studied, both singly and competitively, over a Pt/alumina catalyst in the liquid phase. Each unsaturated nitrile only underwent CâC bond hydrogenation: no evidence was found for the formation of the saturated or unsaturated amine. The nonconjugated allyl cyanide was found to be the most reactive unsaturated nitrile. Activation energies for the hydrogenation of the CâC bond in AC and MCN were determined giving values of 64 ± 7 kJ molâ1 for AC and 37 ± 4 kJ molâ1 for MCN. The reaction was zero order for both nitriles. Competitive hydrogenations revealed that not only does allyl cyanide react preferentially over the other isomers but also it inhibits the hydrogenation of the other isomers. When all four nitriles were simultaneously hydrogenated, inhibition effects were easily seen suggesting that in terms of strength of bonding to the surface an order of AC > CCN > TCN ⌠MN can be generated
Recommended from our members
Stereo and motion parallax cues in human 3D vision: can they vanish without a trace?
In an immersive virtual reality environment, subjects fail to notice when a scene expands or contracts around them, despite correct and consistent information from binocular stereopsis and motion parallax, resulting in gross failures of size constancy (A. Glennerster, L. Tcheang, S. J. Gilson, A. W. Fitzgibbon, & A. J. Parker, 2006). We determined whether the integration of stereopsis/motion parallax cues with texture-based cues could be modified through feedback. Subjects compared the size of two objects, each visible when the room was of a different size. As the subject walked, the room expanded or contracted, although subjects failed to notice any change. Subjects were given feedback about the accuracy of their size judgments, where the âcorrectâ size setting was defined either by texture-based cues or (in a separate experiment) by stereo/motion parallax cues. Because of feedback, observers were able to adjust responses such that fewer errors were made. For texture-based feedback, the pattern of responses was consistent with observers weighting texture cues more heavily. However, for stereo/motion parallax feedback, performance in many conditions became worse such that, paradoxically, biases moved away from the point reinforced by the feedback. This can be explained by assuming that subjects remap the relationship between stereo/motion parallax cues and perceived size or that they develop strategies to change their criterion for a size match on different trials. In either case, subjects appear not to have direct access to stereo/motion parallax cues
Universal properties of many-body delocalization transitions
We study the dynamical melting of "hot" one-dimensional many-body localized
systems. As disorder is weakened below a critical value these non-thermal
quantum glasses melt via a continuous dynamical phase transition into classical
thermal liquids. By accounting for collective resonant tunneling processes, we
derive and numerically solve an effective model for such quantum-to-classical
transitions and compute their universal critical properties. Notably, the
classical thermal liquid exhibits a broad regime of anomalously slow
sub-diffusive equilibration dynamics and energy transport. The subdiffusive
regime is characterized by a continuously evolving dynamical critical exponent
that diverges with a universal power at the transition. Our approach elucidates
the universal long-distance, low-energy scaling structure of many-body
delocalization transitions in one dimension, in a way that is transparently
connected to the underlying microscopic physics.Comment: 12 pages, 6 figures; major changes from v1, including a modified
approach and new emphasis on conventional MBL systems rather than their
critical variant
- âŠ