63,828 research outputs found

    Update on the Measurement of alpha_S with a 500 GeV Linear Collider

    Full text link
    An update on the prospects for the precise measurement of the strong coupling constant alpha_S at a high energy Linear Collider via the three-jet rate is presented. In particular, the issue of the distribution of center-of-mass energies of the identified q-qbar event sample, which can affect the determination of \alpha_S at the scale Q^2=(500 GeV)^2$, is addressed.Comment: 4 pages, 3 figures, LaTex, requires epsfig and aipproc macro

    Einstein metrics on tangent bundles of spheres

    Full text link
    We give an elementary treatment of the existence of complete Kahler-Einstein metrics with nonpositive Einstein constant and underlying manifold diffeomorphic to the tangent bundle of the (n+1)-sphere.Comment: 9 page

    Comparison of C═C bond hydrogenation in C-4 unsaturated nitriles over Pt/alumina

    Get PDF
    The hydrogenation of allyl cyanide (but-1-ene-4-nitrile, AC), trans- and cis-crotononitrile (E- and Z-but-2-ene nitrile, TCN and CCN), and methacrylonitrile (2-cyano-1-propene, MCN) were studied, both singly and competitively, over a Pt/alumina catalyst in the liquid phase. Each unsaturated nitrile only underwent C═C bond hydrogenation: no evidence was found for the formation of the saturated or unsaturated amine. The nonconjugated allyl cyanide was found to be the most reactive unsaturated nitrile. Activation energies for the hydrogenation of the C═C bond in AC and MCN were determined giving values of 64 ± 7 kJ mol–1 for AC and 37 ± 4 kJ mol–1 for MCN. The reaction was zero order for both nitriles. Competitive hydrogenations revealed that not only does allyl cyanide react preferentially over the other isomers but also it inhibits the hydrogenation of the other isomers. When all four nitriles were simultaneously hydrogenated, inhibition effects were easily seen suggesting that in terms of strength of bonding to the surface an order of AC > CCN > TCN ∌ MN can be generated

    INTRODUCTION

    Get PDF
    Agribusiness,

    Universal properties of many-body delocalization transitions

    Full text link
    We study the dynamical melting of "hot" one-dimensional many-body localized systems. As disorder is weakened below a critical value these non-thermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By accounting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow sub-diffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics.Comment: 12 pages, 6 figures; major changes from v1, including a modified approach and new emphasis on conventional MBL systems rather than their critical variant
    • 

    corecore