3 research outputs found

    Studying the ZnO formation in coated steel wire ropes for the automotive industry

    Get PDF
    30th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2021) 15-18 June 2021, Athens, GreeceBowden cables are abundantly applied in the automotive assembly lines leading to drive various devices, such as opening trunk or the fuel tank cap, triggering the handbrake, opening the doors, etc. The cable used in automotive metallic harness is commonly constituted of braided wire galvanized steel, which has been studied to resist the weather aggressions typically imposed by the conditions under which usually work. However, to allow this operating in a steady state way, the braided wire must have the appropriate quality. This work study the reasons of the formation of relatively abundant quantities of zinc oxide (ZnO) in metallic cables used in the automotive industry, a few weeks after their manufacture. It was concluded that there were serious shortcomings of cable cleaning between the wire forming operations and galvanizing, with deposition of ZnO enhancing elements in the interface, which would prove to be crucial to nucleation and development of ZnO on the surface. Thus, the main contribution of this work is to identify and describe the elements able to generate ZnO in coated steel wires, avoiding this phenomenon in the industry.info:eu-repo/semantics/publishedVersio

    Xps Analysis Of Electronic Density Of Iron Tetraazamacrocycle Through Fe 2p Binding Energies On The 3-imidazolilpropyl-modified Surface Of Oxidized N-si(100)

    No full text
    This paper describes the preparation of metallo-organic thin films of [FeTIM(CH3CN)2]2+ complex, where TIM stands for 2,3,9,10-tetramethyl-1,4,8,11-traazacyclotetradeca-1,3,8,10-tetraene on oxidized silicon wafer, SiO2/Si, previously treated with 3-imidazolilpropyltrimethoxysilane, 3-IPTS. X-ray photoemission lines of Fe 2p were used to probe the iron chemical environment in the physically and chemically adsorbed macrocycle complexes. As FeTIM can bind CO, NO or N-heterocyele, a built-on Si wafer sensor device could be envisaged for these molecules. Copyright © 2004 John Wiley & Sons, Ltd.36812141217Mirkhalaf, F., Whittaker, D., Schiffrin, D.J., (1998) J. Electroanal. Chem., 452, p. 203Cao, C., Fadeev, A.Y., McCarthy, T.J., (2001) Langmuir, 17, p. 757Magalhães, J.L., Moreira, L.M., Rodrigues-Filho, U.P., Giz, M.J., Pereira-Da-Silva, M.A., Landers, R., Vinhas, R.C.G., Nascente, P.A.P., (2002) Surf. Interface Anal., 33, p. 293Baldwin, D.A., Pfeifer, R.M., Reichgot, D.W., Rose, N.J., (1993) J. Am. Chem. Soc., 95, p. 5152Hamilton, D.E., Lewis, T.J., Kildahl, N.K., (1979) Inorg. Chem., 12, p. 3364Moreira, J.C., Gushikem, Y.J., (1990) Colloid Interface. Sci, 107, p. 70Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D., (1992) Handbook of X-ray Photoelectron Spectroscopy, , Perkin-Elmer: Eden Prairie, MNLeclercq, G., Pireaux, J.-J., (1995) J. Electron Spectrosc. Relat. Phenom., 71, p. 141Horr, T.J., Arora, P.S., (1997) Coll. Surf. A: Physicochem. Eng. Asp., 126, p. 113Méndez, A., Bosch, E., Rosés, M., Neue, V.D., (2003) J. Chromatogr. A, 986, p. 33Kovacs, D., Shepherd, R.E., (1979) J. Inorg. Biochem., 10, p. 67Joly, W.L., (1984) Modern Inorganic Chemistry, p. 171. , McGraw-Hill: SingaporePankratov, A.N., Uchaeva, I.M., Doronin, S.Yu., Chernova, R.K., (2001) J. Struct. Chem., 42, p. 739Maksic, Z.B., Vianello, R., (2002) J. Phys. Chem., 106, p. 419Kabir, S., Sapse, A.-M., (1991) J. Comput. Chem., 12, p. 114

    Adsorption Of Silanes Bearing Nitrogenated Lewis Bases On Sio 2/si (100) Model Surfaces

    No full text
    The present paper describes the one-pot procedure for the formation of self-assembled thin films of two silanes on the model oxidized silicon wafer, SiO2/Si. SiO2/Si is a model system for other surfaces, such as glass, quartz, aerosol, and silica gel. MALDI-TOF MS with and without a matrix, XPS, and AFM have confirmed the formation of self-assembled thin films of both 3-imidazolylpropyltrimethoxysilane (3-IPTS) and 4-(N- propyltriethoxysilane-imino)pyridine (4-PTSIP) on the SiO2/Si surface after 30 min. Longer adsorption times lead to the deposition of nonreacted 3-IPTS precursors and the formation of agglomerates on the 3-IPTS monolayer. The formation of 4-PTSIP self-assembled layers on SiO2/Si is also demonstrated. The present results for the flat SiO2/Si surface can lead to a better understanding of the formation of a stationary phase for affinity chromatography as well as transition-metal-supported catalysts on silica and their relationship with surface roughness and ordering. The 3-IPTS and 4-PTSIP modified SiO2/Si wafers can also be envisaged as possible built-on-silicon thin-layer chromatography (TLC) extraction devices for metal determination or N-heterocycle analytes, such as histidine and histamine, with "on-spot" MALDI-TOF MS detection. © 2005 Elsevier Inc. All rights reserved.2861303309Sagiv, J., (1980) J. Am. Chem. Soc., 102, p. 92Mirkhalaf, F., Whittaker, D., Schiffrin, D.J., (1998) J. Electroanal. Chem., 452, p. 203Cao, C., Fadeev, A.Y., McCarthy, T.J., (2001) Langmuir, 17, p. 757Tada, H., Nagayama, H., (1994) Langmuir, 10, p. 1472Sander, L.C., Wise, S.A., (1987) Crit. Rev. Anal. Chem., 18, p. 299Regnier, F.E., Unger, K.K., Majors, R.E., (1991) J. Chromatogr., 9, p. 544Stenger, D.A., Hickman, J.J., Calvert, J.M., (1992) J. Am. Chem. Soc., 114, p. 8435Zhang, M.Q., Desai, T., Ferrari, M., (1998) Biomaterials, 19, p. 953Allara, D.L., (1995) Biosens. Bioelectron., 10, p. 771Ross, C.B., Sun, L., Crooks, R.M., (1993) Langmuir, 9, p. 632Gushikem, Y., Moreira, J.C., (1985) J. Colloid Interface Sci., 107, p. 81Moreira, J.C., Gushikem, Y., (1985) Anal. Chim. Acta, 176, p. 263Rodrigues-Filho, U.P., Gushikem, Y., Fujiwara, F.Y., Stadler, E., Drago, V., (1994) Struct. Chem., 5, p. 129Andresa, J.S., Moreira, L.M., Magalhães, J.L., Gonzalez, E.P., Landers, R., Rodrigues-Filho, U.P., (2004) Surf. Interface Anal., 36 (8), p. 1214Magalhães, J.L., Moreira, L.M., Rodrigues-Filho, U.P., Giz, M.J., Pereira-Da-Silva, M.A., Landers, R., Vinhas, R.C.G., Nascente, P.A.P., (2002) Surf. Interface Anal., 33, p. 293Mouder, J.F., Sticke, W.F., Sobol, P.E., Bombem, K.D., (1992) Handbook of X-Ray Photoelectron Spectroscopy, , Perkin-Elmer Eden Prairie, MNLeclercq, G., Pireaux, J.-J., (1995) J. Electron Spectrosc. Relat. Phenom., 71, p. 141Santos, L.S., Haddad, R., Höehr, N.F., Pilli, R.A., Eberlin, M.N., (2004) Anal. Chem., 76 (7), p. 2144Dunaway, D.J., McCarley, B.L., (1994) Langmuir, 10, p. 3598Kornherr, A., Hansal, S., Hansal, W.E.G., Besenhard, J.O., Kronberger, H., Nauer, G.E., Zifferer, G., (2003) J. Chem. Phys., 119 (18), p. 9719Helsen, J.A., Breme, H.J., (1998) Metals As Biomaterials, , Wiley New YorkHorr, T.J., Arora, P.S., (1997) Colloids Surf. a Physicochem. Eng. Aspects, 126, p. 113Ferragina, C., Massucci, M., (1989) J. Inclus. Phenom. Mol. Recogn. Chem., 7, p. 529Beamson, G., Briggs, D., (1992) High Resolution XPS of Organic Polymers: The Scienta ESCA300 DatabaseBarber, M., Connor, J.A., Guest, M.F., Hillier, I.H., Schwarz, M., Stacey, M., (1973) J. Chem. Soc. Faraday Trans. II, 69, p. 551Karas, M., Hillenkamp, F., (1988) Anal. Chem., 60, p. 2299MacFarlane, R.D., Torgerson, D.F., (1976) Science, 191, p. 920Barber, M., Bordoli, R.S., Sedgwick, R.D., Tyler, A.N., (1981) Nature, 293, p. 270Zenobi, R., Knochenmuss, R., (1998) Mass Spectrom. Rev., 17, p. 337Zenobi, R., (1997) Chimia, 51, p. 801Shen, Z., Thomas, J.J., Averbuj, C., Broo, K.M., Engelhard, M., Crowell, J.E., Finn, M.G., Siuzdak, G., (2001) Anal. Chem., 33, p. 179Go, E.P., Prenni, J.E., Wei, J., Jones, A., Hall, S.C., Witkowska, H.E., Shen, Z., Siuzdak, G., (2003) Anal. Chem., 75, p. 250
    corecore