15 research outputs found

    Standardisation and harmonisation of quantitative oncology PET/CT studies

    Get PDF
    This PhD thesis addressed the quantitative performance of positron emission tomography/computed tomograpy (PET/CT) systems to facilitate multicenter studies. Experience of running the European Nuclear Medicine Association multicentre standardisation and harmonisation program EARL is described and concluded that a harmonising accreditation procedure for [18F]FDG is both feasible and successfully identifies gross calibration errors and reduces variability in performance. Possibilities of modernising EARL by harmonising the performance of state of the art PET/CT systems equipped with novel acquisition and reconstruction technologies are investigated and proposed. Experiments and the following validation done on PET/CT systems from major vendors indicate the possibility of implementing an updated EARL standard with increased contrast recovery performance. Additionally, variability in quantitative performance and feasibility of quantitative harmonisation in 89Zr PET/CT imaging is investigated and concluded that an EARL accreditation program for 89Zr PET/CT imaging would be feasible and would facilitate multi-centre 89Zr quantitative studies.In summary, the work described in the thesis is instrumental to facilitate multicenter PET studies by harmonizing the performance of PET/CT systems

    Feasibility of state of the art PET/CT systems performance harmonisation

    Get PDF
    Purpose The objective of this study was to explore the feasibility of harmonising performance for PET/CT systems equipped with time-of-flight (ToF) and resolution modelling/point spread function (PSF) technologies. A second aim was producing a working prototype of new harmonising criteria with higher contrast recoveries than current EARL standards using various SUV metrics. Methods Four PET/CT systems with both ToF and PSF capabilities from three major vendors were used to acquire and reconstruct images of the NEMA NU2-2007 body phantom filled conforming EANM EARL guidelines. A total of 15 reconstruction parameter sets of varying pixel size, post filtering and reconstruction type, with three different acquisition durations were used to compare the quantitative performance of the systems. A target range for recovery curves was established such that it would accommodate the highest matching recoveries from all investigated systems. These updated criteria were validated on 18 additional scanners from 16 sites in order to demonstrate the scanners' ability to meet the new target range. Results Each of the four systems was found to be capable of producing harmonising reconstructions with similar recovery curves. The five reconstruction parameter sets producing harmonising results significantly increased SUVmean (25%) and SUVmax (26%) contrast recoveries compared with current EARL specifications. Additional prospective validation performed on 18 scanners from 16 EARL accredited sites demonstrated the feasibility of updated harmonising specifications. SUVpeak was found to significantly reduce the variability in quantitative results while producing lower recoveries in smaller ( Conclusions Harmonising PET/CT systems with ToF and PSF technologies from different vendors was found to be feasible. The harmonisation of such systems would require an update to the current multicentre accreditation program EARL in order to accommodate higher recoveries. SUVpeak should be further investigated as a noise resistant alternative quantitative metric to SUVmax

    Feasibility of state of the art PET/CT systems performance harmonisation

    Get PDF
    Purpose The objective of this study was to explore the feasibility of harmonising performance for PET/CT systems equipped with time-of-flight (ToF) and resolution modelling/point spread function (PSF) technologies. A second aim was producing a working prototype of new harmonising criteria with higher contrast recoveries than current EARL standards using various SUV metrics. Methods Four PET/CT systems with both ToF and PSF capabilities from three major vendors were used to acquire and reconstruct images of the NEMA NU2-2007 body phantom filled conforming EANM EARL guidelines. A total of 15 reconstruction parameter sets of varying pixel size, post filtering and reconstruction type, with three different acquisition durations were used to compare the quantitative performance of the systems. A target range for recovery curves was established such that it would accommodate the highest matching recoveries from all investigated systems. These updated criteria were validated on 18 additional scanners from 16 sites in order to demonstrate the scanners' ability to meet the new target range. Results Each of the four systems was found to be capable of producing harmonising reconstructions with similar recovery curves. The five reconstruction parameter sets producing harmonising results significantly increased SUVmean (25%) and SUVmax (26%) contrast recoveries compared with current EARL specifications. Additional prospective validation performed on 18 scanners from 16 EARL accredited sites demonstrated the feasibility of updated harmonising specifications. SUVpeak was found to significantly reduce the variability in quantitative results while producing lower recoveries in smaller (<= 17 mm diameter) sphere sizes. Conclusions Harmonising PET/CT systems with ToF and PSF technologies from different vendors was found to be feasible. The harmonisation of such systems would require an update to the current multicentre accreditation program EARL in order to accommodate higher recoveries. SUVpeak should be further investigated as a noise resistant alternative quantitative metric to SUVmax

    EANM/EARL FDG-PET/CT accreditation - summary results from the first 200 accredited imaging systems

    Get PDF
    Purpose From 2010 until July 2016, the EANM Research Ltd. (EARL) FDG-PET/CT accreditation program has collected over 2500 phantom datasets from approximately 200 systems and 150 imaging sites worldwide. The objective of this study is to report the findings and impact of the accreditation program on the participating PET/CT systems. Methods To obtain and maintain EARL accredited status, sites were required to complete and submit two phantom scans - calibration quality control (CalQC), using a uniform cylindrical phantom and image quality control (IQQC), using a NEMA NU2-2007 body phantom. Average volumetric SUV bias and SUV recovery coefficients (RC) were calculated and the data evaluated on the basis of quality control (QC) type, approval status, PET/CT system manufacturer and submission order. Results SUV bias in 5% (n = 96) of all CalQC submissions (n = 1816) exceeded 10%. After corrective actions following EARL feedback, sites achieved 100% compliance within EARL specifications. 30% (n = 1381) of SUVmean and 23% (n = 1095) of SUVmax sphere recoveries from IQQC submissions failed to meet EARL accreditation criteria while after accreditation, failure rate decreased to 12% (n = 360) and 9% (n = 254), respectively. Most systems demonstrated longitudinal SUV bias reproducibility within +/- 5%, while RC values remained stable and generally within +/- 10% for the four largest and +/- 20% for the two smallest spheres. Conclusions Regardless of manufacturer or model, all investigated systems are able to comply with the EARL specifications. Within the EARL accreditation program, gross PET/CT calibration errors are successfully identified and longitudinal variability in PET/CT performances reduced. The program demonstrates that a harmonising accreditation procedure is feasible and achievable

    Feasibility of PET/CT system performance harmonisation for quantitative multicentre Zr-89 studies

    Get PDF
    PurposeThe aim of this study was to investigate the variability in quantitative performance and feasibility of quantitative harmonisation in Zr-89 PET/CT imaging.MethodsEight EANM EARL-accredited (Kaalep A et al., Eur J Nucl Med Mol Imaging 45:412-22, 2018) PET/CT systems were investigated using phantom acquisitions of uniform and NEMA NU2-2007 body phantoms. The phantoms were filled according to EANM EARL guidelines for [F-18]FDG, but [F-18]FDG solution was replaced by a Zr-89 calibration mixture. For each system, standard uptake value (SUV) accuracy and recovery coefficients (RC) using SUVmean, SUVmax and SUVpeak metrics were determined.ResultsAll eight investigated systems demonstrated similarly shaped RC curves, and five of them exhibited closely aligning recoveries when SUV bias correction was applied. From the evaluated metrics, SUVpeak was found to be least sensitive to noise and reconstruction differences among different systems.ConclusionsHarmonisation of PET/CT scanners for quantitative Zr-89 studies is feasible when proper scanner-dose calibrator cross-calibration and harmonised image reconstruction procedures are followed. An accreditation programme for PET/CT scanners would facilitate multicentre Zr-89 quantitative studies

    EANM/EARL FDG-PET/CT accreditation - summary results from the first 200 accredited imaging systems

    Get PDF
    Purpose: From 2010 until July 2016, the EANM Research Ltd. (EARL) FDG-PET/CT accreditation program has collected over 2500 phantom datasets from approximately 200 systems and 150 imaging sites worldwide. The objective of this study is to report the findings and impact of the accreditation program on the participating PET/CT systems. Methods: To obtain and maintain EARL accredited status, sites were required to complete and submit two phantom scans - calibration quality control (CalQC), using a uniform cylindrical phantom and image quality control (IQQC), using a NEMA NU2–2007 body phantom. Average volumetric SUV bias and SUV recovery coefficients (RC) were calculated and the data evaluated on the basis of quality control (QC) type, approval status, PET/CT system manufacturer and submission order. Results: SUV bias in 5% (n = 96) of all CalQC submissions (n = 1816) exceeded 10%. After corrective actions following EARL feedback, sites achieved 100% compliance within EARL specifications. 30% (n = 1381) of SUVmean and 23% (n = 1095) of SUVmax sphere recoveries from IQQC submissions failed to meet EARL accreditation criteria while after accreditation, failure rate decreased to 12% (n = 360) and 9% (n = 254), respectively. Most systems demonstrated longitudinal SUV bias reproducibility within ±5%, while RC values remained stable and generally within ±10% for the four largest and ±20% for the two smallest spheres. Conclusions: Regardless of manufacturer or model, all investigated systems are able to comply with the EARL specifications. Within the EARL accreditation program, gross PET/CT calibration errors are successfully identified and longitudinal variability in PET/CT performances reduced. The program demonstrates that a harmonising accreditation procedure is feasible and achievable

    Quantitative implications of the updated EARL 2019 PET-CT performance standards

    Get PDF
    Purpose Recently, updated EARL specifications (EARL2) have been developed and announced. This study aims at investigating the impact of the EARL2 specifications on the quantitative reads of clinical PET-CT studies and testing a method to enable the use of the EARL2 standards whilst still generating quantitative reads compliant with current EARL standards (EARL1). Methods Thirteen non-small cell lung cancer (NSCLC) and seventeen lymphoma PET-CT studies were used to derive four image datasets-the first dataset complying with EARL1 specifications and the second reconstructed using parameters as described in EARL2. For the third (EARL2F6) and fourth (EARL2F7) dataset in EARL2, respectively, 6 mm and 7 mm Gaussian post-filtering was applied. We compared the results of quantitative metrics (MATV, SUVmax, SUVpeak, SUVmean, TLG, and tumor-to-liver and tumor-to-blood pool ratios) obtained with these 4 datasets in 55 suspected malignant lesions using three commonly used segmentation/volume of interest (VOI) methods (MAX41, A50P, SUV4). Results We found that with EARL2 MAX41 VOI method, MATV decreases by 22%, TLG remains unchanged and SUV values increase by 23-30% depending on the specific metric used. The EARL2F7 dataset produced quantitative metrics best aligning with EARL1, with no significant differences between most of the datasets (p>0.05). Different VOI methods performed similarly with regard to SUV metrics but differences in MATV as well as TLG were observed. No significant difference between NSCLC and lymphoma cancer types was observed. Conclusions Application of EARL2 standards can result in higher SUVs, reduced MATV and slightly changed TLG values relative to EARL1. Applying a Gaussian filter to PET images reconstructed using EARL2 parameters successfully yielded EARL1 compliant data

    Quantitative implications of the updated EARL 2019 PET-CT performance standards

    Get PDF
    Purpose Recently, updated EARL specifications (EARL2) have been developed and announced. This study aims at investigating the impact of the EARL2 specifications on the quantitative reads of clinical PET-CT studies and testing a method to enable the use of the EARL2 standards whilst still generating quantitative reads compliant with current EARL standards (EARL1). Methods Thirteen non-small cell lung cancer (NSCLC) and seventeen lymphoma PET-CT studies were used to derive four image datasets-the first dataset complying with EARL1 specifications and the second reconstructed using parameters as described in EARL2. For the third (EARL2F6) and fourth (EARL2F7) dataset in EARL2, respectively, 6 mm and 7 mm Gaussian post-filtering was applied. We compared the results of quantitative metrics (MATV, SUVmax, SUVpeak, SUVmean, TLG, and tumor-to-liver and tumor-to-blood pool ratios) obtained with these 4 datasets in 55 suspected malignant lesions using three commonly used segmentation/volume of interest (VOI) methods (MAX41, A50P, SUV4). Results We found that with EARL2 MAX41 VOI method, MATV decreases by 22%, TLG remains unchanged and SUV values increase by 23-30% depending on the specific metric used. The EARL2F7 dataset produced quantitative metrics best aligning with EARL1, with no significant differences between most of the datasets (p>0.05). Different VOI methods performed similarly with regard to SUV metrics but differences in MATV as well as TLG were observed. No significant difference between NSCLC and lymphoma cancer types was observed. Conclusions Application of EARL2 standards can result in higher SUVs, reduced MATV and slightly changed TLG values relative to EARL1. Applying a Gaussian filter to PET images reconstructed using EARL2 parameters successfully yielded EARL1 compliant data

    Multicentre Studies

    No full text
    The first part of the chapter provides an introduction on the implementation of quality-assurance programmes in nuclear medicine (NM) services. It is argued that participation in interlaboratory comparisons has two main benefits. First, on top of existing local quality-assurance programmes, participation can add a level of reassurance on quality. Second, interlaboratory comparisons are prerequisite for clinical multicentre trials. The success of an interlaboratory comparison depends on many parameters, this chapter will discuss financing, selection, and procurement of the quality-control devices and selection of participants. The discussion on the execution and evaluation of a multicentre study is followed by the presentation of potential problems and recommendations on how to avoid them. The chapter discusses the most widely known interlaboratory quality-assurance programmes, including the EANM/EARL 18-F FDG PET/CT accreditation programme and the DAT-Scan SPECT standardization programme. In the second part, examples of multicentre studies, based on Monte-Carlo simulated scintillation camera imaging and a computer phantom, with the aims of investigating how different clinical sites perform evaluation using the routine. These studies started in Sweden 2012 and have included renography, bone scintigraphy, lung scintigraphy, and myocardial studies. The camera- and acquisition parameters for each site were considered, and images were distributed by Dicom files to be read in and processed as they were coming from the site’s own camera. The outcome from the evaluation was then compared to the truth (i.e., the known disease, abnormality, change in function) as defined by the activity distribution in the computer phantom

    Feasibility of PET/CT system performance harmonisation for quantitative multicentre 89Zr studies

    Get PDF
    Purpose: The aim of this study was to investigate the variability in quantitative performance and feasibility of quantitative harmonisation in 89Zr PET/CT imaging. Methods: Eight EANM EARL-accredited (Kaalep A et al., Eur J Nucl Med Mol Imaging 45:412–22, 2018) PET/CT systems were investigated using phantom acquisitions of uniform and NEMA NU2-2007 body phantoms. The phantoms were filled according to EANM EARL guidelines for [18F]FDG, but [18F]FDG solution was replaced by a 89Zr calibration mixture. For each system, standard uptake value (SUV) accuracy and recovery coefficients (RC) using SUVmean, SUVmax and SUVpeak metrics were determined. Results: All eight investigated systems demonstrated similarly shaped RC curves, and five of them exhibited closely aligning recoveries when SUV bias correction was applied. From the evaluated metrics, SUVpeak was found to be least sensitive to noise and reconstruction differences among different systems. Conclusions: Harmonisation of PET/CT scanners for quantitative 89Zr studies is feasible when proper scanner-dose calibrator cross-calibration and harmonised image reconstruction procedures are followed. An accreditation programme for PET/CT scanners would facilitate multicentre 89Zr quantitative studies
    corecore