12 research outputs found

    Black holes and wormholes subject to conformal mappings

    Full text link
    Solutions of the field equations of theories of gravity which admit distinct conformal frame representations can look very different in these frames. We show that Brans class IV solutions describe wormholes in the Jordan frame (in a certain parameter range) but correspond to horizonless geometries in the Einstein frame. The reasons for such a change of behaviour under conformal mappings are elucidated in general, using Brans IV solutions as an example.Comment: 7 pages, 2 figure

    Are quantization rules for horizon areas universal?

    Full text link
    Doubts have been expressed on the universality of holographic/string-inspired quantization rules for the horizon areas of stationary black holes or the products of their radii, already in simple 4-dimensional general relativity. Realistic black holes are not stationary but time-dependent. Using two examples of 4D general-relativistic spacetimes containing dynamical black holes for at least part of the time, it is shown that the quantization rules (even counting virtual horizons) cannot hold, except possibly at isolated instants of time, and do not seem to be universal.Comment: One example and one figure added, two figures improved, bibliography expanded and updated. Matches the version accepted for publication in Phys. Rev.

    Are stealth scalar fields stable?

    Full text link
    Non-gravitating (stealth) scalar fields associated with Minkowski space in scalar-tensor gravity are examined. Analytical solutions for both non-minimally coupled scalar field theory and for Brans-Dicke gravity are studied and their stability with respect to tensor perturbations is assessed using a covariant and gauge-invariant formalism developed for alternative gravity. For Brans-Dicke solutions, the stability with respect to homogeneous perturbations is also studied. There are regions of parameter space corresponding to stability and other regions corresponding to instability.Comment: 10 pages, 1 table, no figures, to appear in Phys. Rev,

    Making sense of the bizarre behaviour of horizons in the McVittie spacetime

    Full text link
    The bizarre behaviour of the apparent (black hole and cosmological) horizons of the McVittie spacetime is discussed using, as an analogy, the Schwarzschild-de Sitter-Kottler spacetime (which is a special case of McVittie anyway). For a dust-dominated "background" universe, a black hole cannot exist at early times because its (apparent) horizon would be larger than the cosmological(apparent) horizon. A phantom-dominated "background" universe causes this situation, and the horizon behaviour, to be time-reversed.Comment: 8 pages, 3 figure

    OUP accepted manuscript

    No full text

    Inequalities in screening policies and perioperative protection for patients with acute appendicitis during the pandemic: Subanalysis of the ACIE Appy study

    No full text
    corecore