37 research outputs found

    In vitro and in vivo comparison of the anti-staphylococcal efficacy of generic products and the innovator of oxacillin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxacillin continues to be an important agent in the treatment of staphylococcal infections; many generic products are available and the only requirement for their approval is demonstration of pharmaceutical equivalence. We tested the assumption that pharmaceutical equivalence predicts therapeutic equivalence by comparing 11 generics with the innovator product in terms of concentration of the active pharmaceutical ingredient (API), minimal inhibitory (MIC) and bactericidal concentrations (MBC), and antibacterial efficacy in the neutropenic mouse thigh infection model.</p> <p>Methods</p> <p>The API in each product was measured by a validated microbiological assay and compared by slope (potency) and intercept (concentration) analysis of linear regressions. MIC and MBC were determined by broth microdilution according to Clinical and Laboratory Standard Institute (CLSI) guidelines. For in vivo efficacy, neutropenic ICR mice were inoculated with a clinical strain of <it>Staphylococcus aureus</it>. The animals had 4.14 ± 0.18 log<sub>10 </sub>CFU/thigh when treatment started. Groups of 10 mice per product received a total dose ranging from 2.93 to 750 mg/kg per day administered q1h. Sigmoidal dose-response curves were generated by nonlinear regression fitted to Hill equation to compute maximum effect (E<sub>max</sub>), slope (N), and the effective dose reaching 50% of the E<sub>max </sub>(ED<sub>50</sub>). Based on these results, bacteriostatic dose (BD) and dose needed to kill the first log of bacteria (1LKD) were also determined.</p> <p>Results</p> <p>4 generic products failed pharmaceutical equivalence due to significant differences in potency; however, all products were undistinguishable from the innovator in terms of MIC and MBC. Independently of their status with respect to pharmaceutical equivalence or in vitro activity, all generics failed therapeutic equivalence in vivo, displaying significantly lower E<sub>max </sub>and requiring greater BD and 1LKD, or fitting to a non-sigmoidal model.</p> <p>Conclusions</p> <p>Pharmaceutical or in vitro equivalence did not entail therapeutic equivalence for oxacillin generic products, indicating that criteria for approval deserve review to include evaluation of in vivo efficacy.</p

    Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases

    Get PDF
    BACKGROUND: For its low cost and ease of handling, the mouse remains the preferred experimental animal for preclinical tests. To avoid the interaction of the animal immune system, in vivo antibiotic pharmacodynamic studies often employ cyclophosphamide (CPM) to induce neutropenia. Although high doses (350–450 mg/kg) are still used and their effects on mouse leukocytes have been described, a lower dose (250 mg/kg) is widely preferred today, but the characteristics and applicability of this approach in outbred mice have not been determined. METHODS: Fifteen female ICR mice were injected intraperitoneally with 150 and 100 mg/kg of CPM on days 1 and 4, respectively. Blood samples (~160 μL) were drawn from the retro-orbital sinus of each mouse on days 1, 4, 5, 6, 7 and 11. Leukocytes were counted manually and the number of granulocytes was based on microscopic examination of Wright-stained smears. The impact of neutropenia induced by this method was then determined with a variety of pathogens in three different murine models of human infections: pneumonia (Klebsiella pneumoniae, Streptococcus pneumoniae, Staphylococcus aureus), meningoencephalitis (S. pneumoniae), and the thigh model (S. aureus, Escherichia coli, Bacteroides fragilis). RESULTS: The basal count of leukocytes was within the normal range for outbred mice. On day 4, there was an 84% reduction in total white blood cells, and by day 5 the leukopenia reached its nadir (370 ± 84 cells/mm(3)). Profound neutropenia (≤10 neutrophils/mm(3)) was demonstrated at day 4 and persisted through days 5 and 6. Lymphocytes and monocytes had a 92% and 96% decline between days 1 and 5, respectively. Leukocytes recovered completely by day 11. Mice immunosupressed under this protocol displayed clinical and microbiological patterns of progressive and lethal infectious diseases after inoculation in different organs with diverse human pathogens. CONCLUSION: A CPM total dose of 250 mg/kg is sufficient to induce profound and sustained neutropenia (<10 neutrophils/mm(3)) at least during 3 days in outbred mice, is simpler than previously described methods, and allows successful induction of infection in a variety of experimental models

    Determination of Therapeutic Equivalence of Generic Products of Gentamicin in the Neutropenic Mouse Thigh Infection Model

    Get PDF
    Background: Drug regulatory agencies (DRA) support prescription of generic products of intravenous antibiotics assuming therapeutic equivalence from pharmaceutical equivalence. Recent reports of deaths associated with generic heparin and metoprolol have raised concerns about the efficacy and safety of DRA-approved drugs. Methodology/Principal Findings: To challenge the assumption that pharmaceutical equivalence predicts therapeutic equivalence, we determined in vitro and in vivo the efficacy of the innovator product and 20 pharmaceutically equivalent generics of gentamicin. The data showed that, while only 1 generic product failed in vitro (MIC = 45.3 vs. 0.7 mg/L, P,0.05), 10 products (including gentamicin reference powder) failed in vivo against E. coli due to significantly inferior efficacy (E max = 4.81 to 5.32 vs. 5.99 log 10 CFU/g, P#0.043). Although the design lacked power to detect differences in survival after thigh infection with P. aeruginosa, dissemination to vital organs was significantly higher in animals treated with generic gentamicin despite 4 days of maximally effective treatment. Conclusion: Pharmaceutical equivalence does not predict therapeutic equivalence of generic gentamicin. Stricter criteri

    Nontherapeutic equivalence of a generic product of imipenem-cilastatin is caused more by chemical instability of the active pharmaceutical ingredient (imipenem) than by its substandard amount of cilastatin.

    No full text
    BACKGROUND:We demonstrated therapeutic nonequivalence of "bioequivalent" generics for meropenem, but there is no data with generics of other carbapenems. METHODS:One generic product of imipenem-cilastatin was compared with the innovator in terms of in vitro susceptibility testing, pharmaceutical equivalence, pharmacokinetic (PK) and pharmacodynamic (PD) equivalence in the neutropenic mouse thigh, lung and brain infection models. Both pharmaceutical forms were then subjected to analytical chemistry assays (LC/MS). RESULTS AND CONCLUSION:The generic product had 30% lower concentration of cilastatin compared with the innovator of imipenem-cilastatin. Regarding the active pharmaceutical ingredient (imipenem), we found no differences in MIC, MBC, concentration or potency or AUC, confirming equivalence in terms of in vitro activity. However, the generic failed therapeutic equivalence in all three animal models. Its Emax against S. aureus in the thigh model was consistently lower, killing from 0.1 to 7.3 million less microorganisms per gram in 24 hours than the innovator (P = 0.003). Against K. pneumoniae in the lung model, the generic exhibited a conspicuous Eagle effect fitting a Gaussian equation instead of the expected sigmoid curve of the Hill model. In the brain infection model with P. aeruginosa, the generic failed when bacterial growth was >4 log10 CFU/g in 24 hours, but not if it was less than 2.5 log10 CFU/g. These large differences in the PD profile cannot be explained by the lower concentration of cilastatin, and rather suggested a failure attributable to the imipenem constituent of the generic product. Analytical chemistry assays confirmed that, besides having 30% less cilastatin, the generic imipenem was more acidic, less stable, and exhibited four different degradation masses that were absent in the innovator

    Demonstration of Therapeutic Equivalence of Fluconazole Generic Products in the Neutropenic Mouse Model of Disseminated Candidiasis.

    No full text
    Some generics of antibacterials fail therapeutic equivalence despite being pharmaceutical equivalents of their innovators, but data are scarce with antifungals. We used the neutropenic mice model of disseminated candidiasis to challenge the therapeutic equivalence of three generic products of fluconazole compared with the innovator in terms of concentration of the active pharmaceutical ingredient, analytical chemistry (liquid chromatography/mass spectrometry), in vitro susceptibility testing, single-dose serum pharmacokinetics in infected mice, and in vivo pharmacodynamics. Neutropenic, five week-old, murine pathogen free male mice of the strain Udea:ICR(CD-2) were injected in the tail vein with Candida albicans GRP-0144 (MIC = 0.25 mg/L) or Candida albicans CIB-19177 (MIC = 4 mg/L). Subcutaneous therapy with fluconazole (generics or innovator) and sterile saline (untreated controls) started 2 h after infection and ended 24 h later, with doses ranging from no effect to maximal effect (1 to 128 mg/kg per day) divided every 3 or 6 hours. The Hill's model was fitted to the data by nonlinear regression, and results from each group compared by curve fitting analysis. All products were identical in terms of concentration, chromatographic and spectrographic profiles, MICs, mouse pharmacokinetics, and in vivo pharmacodynamic parameters. In conclusion, the generic products studied were pharmaceutically and therapeutically equivalent to the innovator of fluconazole
    corecore