8 research outputs found

    Prediction of the Effect of CO<sub>2</sub> Laser Cutting Conditions on Spruce Wood Cut Characteristics Using an Artificial Neural Network

    No full text
    In addition to traditional chip methods, performance lasers are often used in the field of wood processing. When cutting wood with CO2 lasers, it is primarily the area of optimization of parameters that is important, which include mainly laser performance and cutting speed. They have a significant impact on the production efficiency and cut quality. The article deals with the use of an artificial neural network (ANN) to predict spruce wood cut characteristics using CO2 lasers under several conditions. The mutual impact of the laser performance (P) and the number of annual circles (AR) for prediction of the characteristics of the cutting kerf and the heat affected zone (HAZ) were examined. For this purpose, the artificial neural network in Statistica 12 software was used. The predicted parameters can be used to qualitatively characterize the cutting kerf properties of the spruce wood cut by CO2 lasers. All the predictions are in good agreement with the results from the available literary sources. The laser power P = 200 W provides a good cutting quality in terms of cutting kerf widths ratio defined as the ratio of cutting kerf width at the lower board to the cutting kerf width at upper board and, therefore, they are optimal for cutting spruce wood at 1.210−2 ms−1

    Bobtnání celulózových porézních materiálů - matematický popis a verifikace

    No full text
    The swelling of natural porous materials, including bleached pulp, as represented by mathematical descriptions, is influenced by a variety of different operating factors. The formerly used Generalised Hygroscopicity Model leads to either a disproportion between a model and a limit value of the sorption capacity or to noticeable deviation in the early swelling phase. Alternatively, the so-called Simple Bounded Growth model solely depends on the maximum sorption capacity, ignoring the physical properties that affect the fibre swelling rate. This research shows that the combination of the two models best describes the swelling process of bleached pulp – a rapid swelling phase and a slower swelling phase. The combined model was found to be useful in characterizing the well-known hornification process.Kompletní kvantitativní popis bobtnacích procesů lignocelulózových materiálů vedoucí k úplnému pochopení bobtnacích procesů biohmoty

    Benzyl Carbamates of 4-Aminosalicylanilides as Possible BACE1 Modulators

    No full text
    Recently, a series of thirty-eight 4-{[(benzyloxy)carbonyl]amino}-2-hydroxybenzoic acid amides designed as potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors were described as potential drugs to alleviate the symptoms of Alzheimer&rsquo;s disease (AD). Some of these compounds have shown promise for inhibiting either AChE or BChE. Since these compounds are structurally similar to agents inhibiting beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), the aim of the contribution was to verify how our compounds were able to affect this enzyme, which, when inhibited, blocks the formation of amyloid-&beta;, but whose inhibition is associated with significant adverse effects in humans. At a concentration of 10 &micro;M, only benzyl {4-[(4-fluorophenyl)carbamoyl]-3-hydroxyphenyl}carbamate was found to show approximately 28% inhibition of BACE1 activity

    ANN Prediction of Laser Power, Cutting Speed, and Number of Cut Annual Rings and Their Influence on Selected Cutting Characteristics of Spruce Wood for CO<sub>2</sub> Laser Processing

    No full text
    In this work, we focus on the prediction of the influence of CO2 laser parameters on the kerf properties of cut spruce wood. Laser kerf cutting is mainly characterized by the width of kerf and the width of the heat-affected zone, which depend on the laser power, cutting speed, and structure of the cut wood, represented by the number of cut annual rings. According to the measurement results and ANN prediction results, for lower values of the laser power (P) and cutting speed (v), the effect of annual rings (ARs) is non-negligible. The results of the sensitivity analysis show that the effect of v increases at higher energy density (E) values. With P in the range between 100 and 500 W, v values between 3 and 50 mm·s−1, and AR numbers between 3 and 11, the combination of P = 200 W and v = 50 mm·s−1, regardless of the AR value, leads to the best cut quality for spruce wood. In this paper, the main goal is to show how changes in the input parameters affect the characteristics of the cutting kerf and heat-affected zones for all possible input parameter values

    Benzyl Carbamates of 4-Aminosalicylanilides as Possible BACE1 Modulators

    No full text
    Recently, a series of thirty-eight 4-{[(benzyloxy)carbonyl]amino}-2-hydroxybenzoic acid amides designed as potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors were described as potential drugs to alleviate the symptoms of Alzheimer’s disease (AD). Some of these compounds have shown promise for inhibiting either AChE or BChE. Since these compounds are structurally similar to agents inhibiting beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), the aim of the contribution was to verify how our compounds were able to affect this enzyme, which, when inhibited, blocks the formation of amyloid-β, but whose inhibition is associated with significant adverse effects in humans. At a concentration of 10 µM, only benzyl {4-[(4-fluorophenyl)carbamoyl]-3-hydroxyphenyl}carbamate was found to show approximately 28% inhibition of BACE1 activity

    A Novel RP-UHPLC-MS/MS Approach for the Determination of Tryptophan Metabolites Derivatized with 2-Bromo-4′-Nitroacetophenone

    No full text
    Many biologically active metabolites of the essential amino acid L-tryptophan (Trp) are associated with different neurodegenerative diseases and neurological disorders. Precise and reliable methods for their determination are needed. Variability in their physicochemical properties makes the analytical process challenging. In this case, chemical modification of analyte derivatization could come into play. Here, we introduce a novel fast reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled with tandem mass spectrometry (MS/MS) method for the determination of Trp and its ten metabolites in human plasma samples after derivatization with 2-bromo-4′-nitroacetophenone (BNAP). The derivatization procedure was optimized in terms of incubation time, temperature, concentration, and volume of the derivatization reagent. Method development comprises a choice of a suitable stationary phase, mobile phase composition, and gradient elution optimization. The developed method was validated according to the ICH guidelines. Results of all validation parameters were within the acceptance criteria of the guideline, i.e., intra- and inter-day precision (expressed as relative standard deviation; RSD) were in the range of 0.5–8.2% and 2.3–7.4%, accuracy was in the range of 93.3–109.7% and 94.7–110.1%, limits of detection (LODs) were in the range of 0.15–9.43 ng/mL, coefficients of determination (R2) were higher than 0.9906, and carryovers were, in all cases, less than 8.8%. The practicability of the method was evaluated using the blue applicability grade index (BAGI) with a score of 65. Finally, the developed method was used for the analysis of Alzheimer’s disease and healthy control plasma to prove its applicability. Statistical analysis revealed significant changes in picolinic acid (PA), anthranilic acid (AA), 5 hydroxyindole-3-acetic acid (5-OH IAA), and quinolinic acid (QA) concentration levels. This could serve as the basis for future studies that will be conducted with a large cohort of patients

    Recent Analytical Methodologies in Lipid Analysis

    No full text
    Lipids represent a large group of biomolecules that are responsible for various functions in organisms. Diseases such as diabetes, chronic inflammation, neurological disorders, or neurodegenerative and cardiovascular diseases can be caused by lipid imbalance. Due to the different stereochemical properties and composition of fatty acyl groups of molecules in most lipid classes, quantification of lipids and development of lipidomic analytical techniques are problematic. Identification of different lipid species from complex matrices is difficult, and therefore individual analytical steps, which include extraction, separation, and detection of lipids, must be chosen properly. This review critically documents recent strategies for lipid analysis from sample pretreatment to instrumental analysis and data interpretation published in the last five years (2019 to 2023). The advantages and disadvantages of various extraction methods are covered. The instrumental analysis step comprises methods for lipid identification and quantification. Mass spectrometry (MS) is the most used technique in lipid analysis, which can be performed by direct infusion MS approach or in combination with suitable separation techniques such as liquid chromatography or gas chromatography. Special attention is also given to the correct evaluation and interpretation of the data obtained from the lipid analyses. Only accurate, precise, robust and reliable analytical strategies are able to bring complex and useful lipidomic information, which may contribute to clarification of some diseases at the molecular level, and may be used as putative biomarkers and/or therapeutic targets

    Implementation of Modern Therapeutic Drug Monitoring and Lipidomics Approaches in Clinical Practice: A Case Study with Colistin Treatment

    No full text
    Nowadays, lipidomics plays a crucial role in the investigation of novel biomarkers of various diseases. Its implementation into the field of clinical analysis led to the identification of specific lipids and/or significant changes in their plasma levels in patients suffering from cancer, Alzheimer’s disease, sepsis, and many other diseases and pathological conditions. Profiling of lipids and determination of their plasma concentrations could also be helpful in the case of drug therapy management, especially in combination with therapeutic drug monitoring (TDM). Here, for the first time, a combined approach based on the TDM of colistin, a last-resort antibiotic, and lipidomic profiling is presented in a case study of a critically ill male patient suffering from Pseudomonas aeruginosa-induced pneumonia. Implementation of innovative analytical approaches for TDM (online combination of capillary electrophoresis with tandem mass spectrometry, CZE-MS/MS) and lipidomics (liquid chromatography–tandem mass spectrometry, LC-MS/MS) was demonstrated. The CZE-MS/MS strategy confirmed the chosen colistin drug dosing regimen, leading to stable colistin concentrations in plasma samples. The determined colistin concentrations in plasma samples reached the required minimal inhibitory concentration of 1 μg/mL. The complex lipidomics approach led to monitoring 545 lipids in collected patient plasma samples during and after the therapy. Some changes in specific individual lipids were in good agreement with previous lipidomics studies dealing with sepsis. The presented case study represents a good starting point for identifying particular individual lipids that could correlate with antimicrobial and inflammation therapeutic management
    corecore