142 research outputs found

    A Massively Parallel Imaging System Based on the Self-Mixing Effect in a Vertical-Cavity Surface-Emitting Laser Array

    Get PDF
    In this work we propose a massively parallel self-mixing imaging system, based on an array of VCSELs, to measure surface profiles of displacement, distance, velocity and liquid flow rate. The feasibility of this concept is demonstrated by the successful operation of a small scale prototype consisting of eight individual commercial VCSELs with integrated photodetectors. The system is used to accurately measure the velocity at different radial points on a rotating disk. The results show no influence of crosstalk. A massive version of the system will be useful in many industrial and biomedical applications where real-time surface profiling, vibrometry and velocimetry will be very beneficial

    The Effect of Multiple Transverse Modes in Self-Mixing Sensors Based on Vertical-Cavity Surface-Emitting Lasers

    Get PDF
    In this work we investigate the effect of multiple transverse modes, such as those found in Vertical-Cavity Surface-Emitting Lasers, in self-mixing sensors. We show that the sensitivity of the system and the accuracy of the measurement changes periodically with target distance

    Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo

    Get PDF
    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals

    Experimental Demonstration of Signal-to-Noise-Ratio Improvement of Fourier-Domain Optical Coherence Tomography

    Full text link
    A recent advance in optical coherence tomography (OCT), termed swept-source OCT, is generalized into a new technique, Fourier-domain OCT. It represents a realization of a full-field OCT system in place of the conventional serial image acquisition in transverse directions typically implemented in "flying-spot" mode. To realize the full-field image acquisition, a Fourier holography system illuminated with a swept-source is employed instead of a Michelson interferometer commonly used in OCT. Fourier-domain OCT offers a new leap in signal-to-noise ratio improvement, as compared to flying-spot OCT systems. This paper presents experimental evidence that the signal-to-noise ratio of this new technique is indeed improved.Comment: submitted to Optics Letters 7/14/200

    Hidden Kondo Effect in a Correlated Electron Chain

    Full text link
    We develop a general Bethe Ansatz formalism for diagonalizing an integrable model of a magnetic impurity of arbitrary spin coupled ferro- or antiferromagnetically to a chain of interacting electrons. The method is applied to an open chain, with the exact solution revealing a ``hidden'' Kondo effect driven by forward electron scattering off the impurity. We argue that the so-called ``operator reflection matrices'' proposed in recent Bethe Ansatz studies of related models emulate only forward electron-impurity scattering which may explain the absence of complete Kondo screening for certain values of the impurity-electron coupling in these models.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let

    Background free imaging of upconversion nanoparticle distribution in human skin

    Get PDF
    Widespread applications of nanotechnology materials have raised safety concerns due to their possible penetration through skin and concomitant uptake in the organism. This calls for systematic study of nanoparticle transport kinetics in skin, where high-resolution optical imaging approaches are often preferred. We report on application of emerging luminescence nanomaterial, called upconversion nanoparticles (UCNPs), to optical imaging in skin that results in complete suppression of background due to the excitation light back-scattering and biological tissue autofluorescence. Freshly excised intact and microneedle-treated human skin samples were topically coated with oil formulation of UCNPs and optically imaged. In the first case, 8- and 32-nm UCNPs stayed at the topmost layer of the intact skin, stratum corneum. In the second case, 8-nm nanoparticles were found localized at indentations made by the microneedle spreading in dermis very slowly (estimated diffusion coefficient, D-np = 3-7 x 10(-12) cm(2) . s(-1)). The maximum possible UCNP-imaging contrast was attained by suppressing the background level to that of the electronic noise, which was estimated to be superior in comparison with the existing optical labels. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE)

    Signal-to-signal-to-noise ratio of full-field Fourier domain optical coherence tomography: experiment

    Get PDF
    We report a new approach in optical coherence tomography (OCT) termed full-field Fourier-domain OCT (3F-OCT). A three-dimensional image of a sample is obtained by digital reconstruction of a three-dimensional data cube, acquired using a Fourier holography recording system illuminated with a swept-source. This paper presents theoretical and experimental study of the signal-to-noise ratio of the full-field approach versus serial image acquisition approach, represented by 3F-OCT and "flying-spot" OCT systems, respectively

    Exact Thermodynamics of Disordered Impurities in Quantum Spin Chains

    Full text link
    Exact results for the thermodynamic properties of ensembles of magnetic impurities with randomly distributed host-impurity couplings in the quantum antiferromagnetic Heisenberg model are presented. Exact calculations are done for arbitrary values of temperature and external magnetic field. We have shown that for strong disorder the quenching of the impurity moments is absent. For weak disorder the screening persists, but with the critical non-Fermi-liquid behaviors of the magnetic susceptibility and specific heat. A comparison with the disordered Kondo effect experiments in dirty metallic alloys is performed.Comment: 4 pages Late

    Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport

    Get PDF
    Widespread applications of ZnO nanoparticles (NP) in sun-blocking cosmetic products have raised safety concerns related to their potential transdermal penetration and resultant cytotoxicity. Nonlinear optical microscopy provides means for high-contrast imaging of ZnO NPs lending in vitro and in vivo assessment of the nanoparticle uptake in skin, provided their nonlinear optical properties are characterized. We report on this characterization using ZnO NP commercial product, Zinclear, mean-sized 21 nm. Two-photon action cross-section of this bandgap material (Ebg = 3.37 eV, λbg = 370 nm) measured by two techniques yielded consistent results of ηZnOσZnO(2ph) = 6.2 ± 0.8 μGM at 795 nm, and 32 ± 6 μGM at 770 nm per unit ZnO crystal cell, with the quantum efficiency of ηZnO = (0.9 ± 0.2) %. In order to demonstrate the quantitative imaging, nonlinear optical microscopy images of the excised human skin topically treated with Zinclear were acquired and processed using σZnO(2ph) and ηZnOvalues yielding nanoparticle concentration map in skin. Accumulations of Zinclear ZnO nanoparticles were detected only on the skin surface and in skin folds reaching concentrations of 800 NPs per μm3

    Universal and nonuniversal contributions to block-block entanglement in many-fermion systems

    Full text link
    We calculate the entanglement entropy of blocks of size x embedded in a larger system of size L, by means of a combination of analytical and numerical techniques. The complete entanglement entropy in this case is a sum of three terms. One is a universal x and L-dependent term, first predicted by Calabrese and Cardy, the second is a nonuniversal term arising from the thermodynamic limit, and the third is a finite size correction. We give an explicit expression for the second, nonuniversal, term for the one-dimensional Hubbard model, and numerically assess the importance of all three contributions by comparing to the entropy obtained from fully numerical diagonalization of the many-body Hamiltonian. We find that finite-size corrections are very small. The universal Calabrese-Cardy term is equally small for small blocks, but becomes larger for x>1. In all investigated situations, however, the by far dominating contribution is the nonuniversal term steming from the thermodynamic limit.Comment: 6 pages, 3 figure
    corecore