2,305 research outputs found

    Tunneling current between graphene layers

    Full text link
    The physical model that allows to calculate the values of the tunneling current be-tween graphene layers is proposed. The tunneling current according to the pro-posed model is proportional to the area of tunneling transition. The calculated value of tunneling conductivity is in qualitative agreement with experimental data.Comment: 4 page

    Biocompatibility and applications of carbon nanotubes in medical nanorobots

    Get PDF
    The set of nanoelectromechanical systems (NEMS) based on relative motion of carbon nanotubes walls is proposed for use in medical nanorobots. This set includes electromechanical nanothermometer, jet nanoengine, nanosyringe (the last can be used simultaneously as nanoprobe for individual biological molecules and drug nanodeliver). Principal schemes of these NEMS are considered. Operational characteristics of nanothermometer are analyzed. The possible methods of these NEMS actuation are considered. The present-day progress in nanotechnology techniques which are necessary for assembling of NEMS under consideration is discussed. Biocompatibility of carbon nanotubes is analyzed in connection with perspectives of their application in nanomedicine

    Structure and energetics of carbon, hexagonal boron nitride and carbon/hexagonal boron nitride single-layer and bilayer nanoscrolls

    Full text link
    Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.Comment: 9 pages, 6 figure

    Stability and dynamics of vacancy in graphene flakes: Edge effects

    Get PDF
    a b s t r a c t Density functional theory calculations show that graphene flakes with monovacancy at the edge are energetically more stable than the flakes with vacancy in the middle. The energies of metastable and transition states for one step of vacancy motion towards the edge are calculated. We show that thermally activated motion of vacancy towards the edge occurs even at room temperature whereas the probability of return motion back to the middle is negligible. Molecular dynamics simulations of the vacancy motion in graphene flakes confirm this conclusion. The obtained results explain the mechanisms driving structural transformations in graphene

    Molecular dynamics simulation of the self-retracting motion of a graphene flake

    Full text link
    The self-retracting motion of a graphene flake on a stack of graphene flakes is studied using molecular dynamics simulations. It is shown that in the case when the extended flake is initially rotated to an incommensurate state, there is no barrier to the self-retracting motion of the flake and the flake retracts as fast as possible. If the extended flake is initially commensurate with the other flakes, the self-retracting motion is hindered by potential energy barriers. However, in this case, the rotation of the flake to incommensurate states is often observed. Such a rotation is found to be induced by the torque acting on the flake on hills of the potential relief of the interaction energy between the flakes. Contrary to carbon nanotubes, telescopic oscillations of the graphene flake are suppressed because of the high dynamic friction related to the excitation of flexural vibrations of the flake. This makes graphene promising for the use in fast-responding electromechanical memory cells.Comment: 24 pages, 8 figure

    Kondo Lattice without Nozieres Exhaustion Effect

    Full text link
    We discuss the properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in z direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozieres' exhaustion problem does not occur. The excitation spectrum of the model is gapless both in charge and spin sectors. The disordered phases and possible experimental realizations of the model are briefly discussed.Comment: 4 pages, 3 figure

    AA stacking, tribological and electronic properties of double-layer graphene with krypton spacer

    Full text link
    Structural, energetic and tribological characteristics of double-layer graphene with commensurate and incommensurate krypton spacers of nearly monolayer coverage are studied within the van der Waals-corrected density functional theory. It is shown that when the spacer is in the commensurate phase, the graphene layers have the AA stacking. For this phase, the barriers to relative in-plane translational and rotational motion and the shear mode frequency of the graphene layers are calculated. For the incommensurate phase, both of the barriers are found to be negligibly small. A considerable change of tunneling conductance between the graphene layers separated by the commensurate krypton spacer at their relative subangstrom displacement is revealed by the use of the Bardeen method. The possibility of nanoelectromechanical systems based on the studied tribological and electronic properties of the considered heterostructures is discussed

    Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Get PDF
    The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8) nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.Comment: 9 pages, 6 figures, 1 tabl

    Unusual magnetoelectric effect in paramagnetic rare-earth langasite

    Get PDF
    Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed matter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linear magnetoelectric (ME) effect - the electric polarization proportional to the applied magnetic field and the magnetization induced by the electric field. Here, we report the experimental study of the holmium-doped langasite, Hox_{x}La3x_{3-x}Ga5_5SiO14_{14}, showing a puzzling combination of linear and highly non-linear ME responses in the disordered paramagnetic state: its electric polarization grows linearly with the magnetic field but oscillates many times upon rotation of the magnetic field vector. We propose a simple phenomenological Hamiltonian describing this unusual behavior and derive it microscopically using the coupling of magnetic multipoles of the rare-earth ions to the electric field.Comment: 8 pages, 3 figure
    corecore