6 research outputs found

    Graphene Microcapsule Arrays for Combinatorial Electron Microscopy and Spectroscopy in Liquids

    No full text
    Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput <i>in situ</i> studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studying a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated

    From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via <i>in Situ</i> Scanning Electron Microscopy

    No full text
    Li metal is the preferred anode material for all-solid-state Li batteries. However, a stable plating and stripping of Li metal at the anode–solid electrolyte interface remains a significant challenge particularly at practically feasible current densities. This problem usually relates to high and/or inhomogeneous Li-electrode–electrolyte interfacial impedance and formation and growth of high-aspect-ratio dendritic Li deposits at the electrode–electrolyte interface, which eventually shunt the battery. To better understand details of Li metal plating, we use <i>operando</i> electron microscopy and Auger spectroscopy to probe nucleation, growth, and stripping of Li metal during cycling of a model solid-state Li battery as a function of current density and oxygen pressure. We find a linear correlation between the nucleation density of Li clusters and the charging rate in an ultrahigh vacuum, which agrees with a classical nucleation and growth model. Moreover, the trace amount of oxidizing gas (≈10<sup>–6</sup> Pa of O<sub>2</sub>) promotes the Li growth in a form of nanowires due to a fine balance between the ion current density and a growth rate of a thin lithium-oxide shell on the surface of the metallic Li. Interestingly, increasing the partial pressure of O<sub>2</sub> to 10<sup>–5</sup> Pa resumes Li plating in a form of 3D particles. Our results demonstrate the importance of trace amounts of preexisting or ambient oxidizing species on lithiation processes in solid-state batteries

    Fabrication, Testing, and Simulation of All-Solid-State Three-Dimensional Li-Ion Batteries

    No full text
    Demonstration of three-dimensional all-solid-state Li-ion batteries (3D SSLIBs) has been a long-standing goal for numerous researchers in the battery community interested in developing high power and high areal energy density storage solutions for a variety of applications. Ideally, the 3D geometry maximizes the volume of active material per unit area, while keeping its thickness small to allow for fast Li diffusion. In this paper, we describe experimental testing and simulation of 3D SSLIBs fabricated using materials and thin-film deposition methods compatible with semiconductor device processing. These 3D SSLIBs consist of Si microcolumns onto which the battery layers are sequentially deposited using physical vapor deposition. The power performance of the 3D SSLIBs lags significantly behind that of similarly prepared planar SSLIBs. Analysis of the experimental results using finite element modeling indicates that the origin of the poor power performance is the structural inhomogeneity of the 3D SSLIB, coupled with low electrolyte ionic conductivity and diffusion rate in the cathode, which lead to highly nonuniform internal current density distribution and poor cathode utilization

    Doping-Based Stabilization of the M2 Phase in Free-Standing VO<sub>2</sub> Nanostructures at Room Temperature

    No full text
    A new high-yield method of doping VO<sub>2</sub> nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott transition field-effect transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal–insulator transition. A combination of X-ray microdiffraction, micro-Raman spectroscopy, energy-dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping level phase diagram is established

    Enabling Photoemission Electron Microscopy in Liquids via Graphene-Capped Microchannel Arrays

    No full text
    Photoelectron emission microscopy (PEEM) is a powerful tool to spectroscopically image dynamic surface processes at the nanoscale, but it is traditionally limited to ultrahigh or moderate vacuum conditions. Here, we develop a novel graphene-capped multichannel array sample platform that extends the capabilities of photoelectron spectromicroscopy to routine liquid and atmospheric pressure studies with standard PEEM setups. Using this platform, we show that graphene has only a minor influence on the electronic structure of water in the first few layers and thus will allow for the examination of minimally perturbed aqueous-phase interfacial dynamics. Analogous to microarray screening technology in biomedical research, our platform is highly suitable for applications in tandem with large-scale data mining, pattern recognition, and combinatorial methods for spectro-temporal and spatiotemporal analyses at solid–liquid interfaces. Applying Bayesian linear unmixing algorithm to X-ray induced water radiolysis process, we were able to discriminate between different radiolysis scenarios and observe a metastable “wetting” intermediate water layer during the late stages of bubble formation

    Enabling Photoemission Electron Microscopy in Liquids via Graphene-Capped Microchannel Arrays

    No full text
    Photoelectron emission microscopy (PEEM) is a powerful tool to spectroscopically image dynamic surface processes at the nanoscale, but it is traditionally limited to ultrahigh or moderate vacuum conditions. Here, we develop a novel graphene-capped multichannel array sample platform that extends the capabilities of photoelectron spectromicroscopy to routine liquid and atmospheric pressure studies with standard PEEM setups. Using this platform, we show that graphene has only a minor influence on the electronic structure of water in the first few layers and thus will allow for the examination of minimally perturbed aqueous-phase interfacial dynamics. Analogous to microarray screening technology in biomedical research, our platform is highly suitable for applications in tandem with large-scale data mining, pattern recognition, and combinatorial methods for spectro-temporal and spatiotemporal analyses at solid–liquid interfaces. Applying Bayesian linear unmixing algorithm to X-ray induced water radiolysis process, we were able to discriminate between different radiolysis scenarios and observe a metastable “wetting” intermediate water layer during the late stages of bubble formation
    corecore