13 research outputs found

    Kinetics of the fast electric signal from oriented purple membrane

    Get PDF
    The photoinduced electric response of oriented purple membranes associated with processes before the K-intermediate decay of bacteriorhodopsin was measured in the 180-300 K temperature range. These response signals consist of two kinetically distinct components (both temperature dependent). The experimental data show a correlation between the time constants of the rise of the signal and solution resistance. A model is proposed to assign these components to two diffusion-limited processes of charge displacement in the solution. The displacement is caused by the electric field of the photoinduced transient dipole which is formed in the primary act of the bacteriorhodopsin photocycle. The two processes are assigned as: (a) the conduction of electrical current through H-bonds (time resolved only in the temperature range 180-200 K) and (b) the diffusion of charges through the interfacial layer

    Light-driven Na(+) pump from Gillisia limnaea: a high-affinity Na(+) binding site is formed transiently in the photocycle.

    No full text
    A group of microbial retinal proteins most closely related to the proton pump xanthorhodopsin has a novel sequence motif and a novel function. Instead of, or in addition to, proton transport, they perform light-driven sodium ion transport, as reported for one representative of this group (KR2) from Krokinobacter. In this paper, we examine a similar protein, GLR from Gillisia limnaea, expressed in Escherichia coli, which shares some properties with KR2 but transports only Na(+). The absorption spectrum of GLR is insensitive to Na(+) at concentrations of ≤3 M. However, very low concentrations of Na(+) cause profound differences in the decay and rise time of photocycle intermediates, consistent with a switch from a "Na(+)-independent" to a "Na(+)-dependent" photocycle (or photocycle branch) at ∼60 μM Na(+). The rates of photocycle steps in the latter, but not the former, are linearly dependent on Na(+) concentration. This suggests that a high-affinity Na(+) binding site is created transiently after photoexcitation, and entry of Na(+) from the bulk to this site redirects the course of events in the remainder of the cycle. A greater concentration of Na(+) is needed for switching the reaction path at lower pH. The data suggest therefore competition between H(+) and Na(+) to determine the two alternative pathways. The idea that a Na(+) binding site can be created at the Schiff base counterion is supported by the finding that upon perturbation of this region in the D251E mutant, Na(+) binds without photoexcitation. Binding of Na(+) to the mutant shifts the chromophore maximum to the red like that of H(+), which occurs in the photocycle of the wild type
    corecore