6 research outputs found

    A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans

    Get PDF
    C1q domain-containing (C1qDC) proteins are a group of biopolymers involved in immune response as pattern recognition receptors (PRRs) in a lectin-like manner. A new protein MkC1qDC from the hemolymph plasma of Modiolus kurilensis bivalve mollusk widespread in the Northwest Pacific was purified. The isolation procedure included ammonium sulfate precipitation followed by affinity chromatography on pectin-Sepharose. The full-length MkC1qDC sequence was assembled using de novo mass-spectrometry peptide sequencing complemented with N-terminal Edman’s degradation, and included 176 amino acid residues with molecular mass of 19 kDa displaying high homology to bivalve C1qDC proteins. MkC1qDC demonstrated antibacterial properties against Gram-negative and Gram-positive strains. MkC1qDC binds to a number of saccharides in Ca(2+)-dependent manner which characterized by structural meta-similarity in acidic group enrichment of galactose and mannose derivatives incorporated in diversified molecular species of glycans. Alginate, Îș-carrageenan, fucoidan, and pectin were found to be highly effective inhibitors of MkC1qDC activity. Yeast mannan, lipopolysaccharide (LPS), peptidoglycan (PGN) and mucin showed an inhibitory effect at concentrations three orders of magnitude greater than for the most effective saccharides. MkC1qDC localized to the mussel hemal system and interstitial compartment. Intriguingly, MkC1qDC was found to suppress proliferation of human adenocarcinoma HeLa cells in a dose-dependent manner, indicating to the biomedical potential of MkC1qDC protein

    A Novel C1q Domain-Containing Protein Isolated from the Mollusk Modiolus kurilensis Recognizing Glycans Enriched with Acidic Galactans and Mannans

    No full text
    C1q domain-containing (C1qDC) proteins are a group of biopolymers involved in immune response as pattern recognition receptors (PRRs) in a lectin-like manner. A new protein MkC1qDC from the hemolymph plasma of Modiolus kurilensis bivalve mollusk widespread in the Northwest Pacific was purified. The isolation procedure included ammonium sulfate precipitation followed by affinity chromatography on pectin-Sepharose. The full-length MkC1qDC sequence was assembled using de novo mass-spectrometry peptide sequencing complemented with N-terminal Edman’s degradation, and included 176 amino acid residues with molecular mass of 19 kDa displaying high homology to bivalve C1qDC proteins. MkC1qDC demonstrated antibacterial properties against Gram-negative and Gram-positive strains. MkC1qDC binds to a number of saccharides in Ca2+-dependent manner which characterized by structural meta-similarity in acidic group enrichment of galactose and mannose derivatives incorporated in diversified molecular species of glycans. Alginate, κ-carrageenan, fucoidan, and pectin were found to be highly effective inhibitors of MkC1qDC activity. Yeast mannan, lipopolysaccharide (LPS), peptidoglycan (PGN) and mucin showed an inhibitory effect at concentrations three orders of magnitude greater than for the most effective saccharides. MkC1qDC localized to the mussel hemal system and interstitial compartment. Intriguingly, MkC1qDC was found to suppress proliferation of human adenocarcinoma HeLa cells in a dose-dependent manner, indicating to the biomedical potential of MkC1qDC protein

    Localization of foreign atoms and structure of sublattices of multicomponent oxide-metallic compounds

    No full text
    The behaviour of slightly non-ideal base-gas in the magnetic field is first studied; it is shown that such a system can be considered as a model of a superconductor of the second kind. And explanation of abnormal temperature dependence of the magnetic field penetration depth in high-temperature metal-oxide superconductors is first givenAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    Invertebrate C1q Domain-Containing Proteins: Molecular Structure, Functional Properties and Biomedical Potential

    No full text
    C1q domain-containing proteins (C1qDC proteins) unexpectedly turned out to be widespread molecules among a variety of invertebrates, despite their lack of an integral complement system. Despite the wide distribution in the genomes of various invertebrates, data on the structure and properties of the isolated and characterized C1qDC proteins, which belong to the C1q/TNF superfamily, are sporadic, although they hold great practical potential for the creation of new biotechnologies. This review not only summarizes the current data on the properties of already-isolated or bioengineered C1qDC proteins but also projects further strategies for their study and biomedical application. It has been shown that further broad study of the carbohydrate specificity of the proteins can provide great opportunities, since for many of them only interactions with pathogen-associated molecular patterns (PAMPs) was evaluated and their antimicrobial, antiviral, and fungicidal activities were studied. However, data on the properties of C1qDC proteins, which researchers originally discovered as lectins and therefore studied their fine carbohydrate specificity and antitumor activity, intriguingly show the great potential of this family of proteins for the creation of targeted drug delivery systems, vaccines, and clinical assays for the differential diagnosis of cancer. The ability of invertebrate C1qDC proteins to recognize patterns of aberrant glycosylation of human cell surfaces and interact with mammalian immunoglobulins indicates the great biomedical potential of these molecules

    Brain Mechanisms of Embodied Decision-Making

    No full text
    One of the ways to comprehend mental abilities of individuals is to examine their underlying neural processes and mechanisms. To explore the role of cingulate cortical neurons in “mental rehearsal“ immediately before every trial of appetitive instrumental task in well-trained animals, we analyzed recorded single-unit activity in relation to the task-relevant events during task trials and during delay periods inside each trial in the same animals. The results showed that neuronal activity in the rabbit posterior cingulate cortex during the delay consisted mostly of activity of those neurons which were specialized in relation to this task, though the delay periods were not intended to remember previous events. The data indicated that these neuronal groups are involved in the processes of unfolding planned future behavior. Sequences of neuronal events during the delay period (i.e. during” covert behavior” phase), used for decision making, depended on the role of neuron in overt behavior. During delay periods replays (or preplays) started with activity of very selective (“narrow selective”) neurons, specialized in relation to concrete behavioral acts, but late in the delay included activity of such “broadly selective” neurons which might have been related to movements similar in broad categories of behavior. Such results indicate that task-related neurons with different degree of selectivity are all involved in overt and covert phase of experience actualization, which might imply that decision making in rabbits is the embodied cognitive process

    Mitoregulin Contributes to Creatine Shuttling and Cardiolipin Protection in Mice Muscle

    No full text
    Small peptides compose a large share of the mitochondrial proteome. Mitoregulin (Mtln) is a mitochondrial peptide known to contribute to the respiratory complex I functioning and other processes in mitochondria. In our previous studies, we demonstrated that Mtln knockout mice develop obesity and accumulate triglycerides and other oxidation substrates in serum, concomitant with an exhaustion of tricarboxylic acids cycle intermediates. Here we examined the functional role of Mtln in skeletal muscles, one of the major energy consuming tissues. We observed reduced muscle strength for Mtln knockout mice. Decrease of the mitochondrial cardiolipin and concomitant increase in monolysocardiolipin concentration upon Mtln inactivation is likely to be a consequence of imbalance between oxidative damage and remodeling of cardiolipin. It is accompanied by the mitochondrial creatine kinase octamer dissociation and suboptimal respiratory chain performance in Mtln knockout mice
    corecore