17 research outputs found

    Thermal stability of internal gettering of iron in silicon and its impact on optimization of gettering

    Get PDF
    The redissolution behavior of gettered iron was studied in p-type Czochralski-grown silicon with a doping level of 2.5×10exp14 cm−3 and an oxide precipitate density of 5×10exp9 cm−3. The concentrations of interstitial iron and iron–boron pairs were measured by deep level transient spectroscopy. It was found that the dependence of redissolved iron concentration on annealing time can be fitted by the function C(t)=C_0[1−exp(−t/tau_diss)], and the dissolution rate tau−1diss has an Arrhenius-type temperature dependence of tau−1diss=4.01×10exp4 × exp[−(1.47±0.10) eV/k_BT] s−1. Based on this empirical equation, we predict how stable the gettered iron is during different annealing sequences and discuss implications for optimization of internal gettering.Peer reviewe

    Muon Spin Relaxation Study of (La, Ca)MnO3

    Full text link
    We report predominantly zero field muon spin relaxation measurements in a series of Ca-doped LaMnO_3 compounds which includes the colossal magnetoresistive manganites. Our principal result is a systematic study of the spin-lattice relaxation rates 1/T_1 and magnetic order parameters in the series La_{1-x}Ca_xMnO_3, x = 0.0, 0.06, 0.18, 0.33, 0.67 and 1.0. In LaMnO_3 and CaMnO_3 we find very narrow critical regions near the Neel temperatures T_N and temperature independent 1/T_1 values above T_N. From the 1/T_1 in LaMnO_3 we derive an exchange integral J = 0.83 meV which is consistent with the mean field expression for T_N. All of the doped manganites except CaMnO_3 display anomalously slow, spatially inhomogeneous spin-lattice relaxation below their ordering temperatures. In the ferromagnetic (FM) insulating La_{0.82}Ca_{0.18}MnO_3 and ferromagnetic conducting La_{0.67}Ca_{0.33}MnO_3 systems we show that there exists a bi-modal distribution of \muSR rates \lambda_f and \lambda_s associated with relatively 'fast' and 'slow' Mn fluctuation rates, respectively. A physical picture is hypothesized for these FM phases in which the fast Mn rates are due to overdamped spin waves characteristic of a disordered FM, and the slower Mn relaxation rates derive from distinct, relatively insulating regions in the sample. Finally, likely muon sites are identified, and evidence for muon diffusion in these materials is discussed.Comment: 21 pages, 17 figure
    corecore