53 research outputs found

    Structural aspects of translation termination on the ribosome

    Get PDF
    Translation of genetic information encoded in messenger RNAs into polypeptide sequences is carried out by ribosomes in all organisms. When a full protein is synthesized, a stop codon positioned in the ribosomal A site signals termination of translation and protein release. Translation termination depends on class I release factors. Recently, atomic-resolution crystal structures were determined for bacterial 70S ribosome termination complexes bound with release factors RF1 or RF2. In combination with recent biochemical studies, the structures resolve long-standing questions about translation termination. They bring insights into the mechanisms of recognition of all three stop codons, peptidyl-tRNA hydrolysis, and coordination of stop-codon recognition with peptidyl-tRNA hydrolysis. In this review, the structural aspects of these mechanisms are discussed

    Mechanism of premature translation termination on a sense codon

    Get PDF
    Accurate translation termination by release factors (RFs) is critical for the integrity of cellular proteomes. Premature termination on sense codons, for example, results in truncated proteins, whose accumulation could be detrimental to the cell. Nevertheless, some sense codons are prone to triggering premature termination, but the structural basis for this is unclear. To investigate premature termination, we determined a cryo-EM structure of the Escherichia coli 70S ribosome bound with RF1 in response to a UAU (Tyr) sense codon. The structure reveals that RF1 recognizes a UAU codon similarly to a UAG stop codon, suggesting that sense codons induce premature termination because they structurally mimic a stop codon. Hydrophobic interaction between the nucleobase of U3 (the third position of the UAU codon) and conserved Ile 196 in RF1 is important for misreading the UAU codon. Analyses of RNA binding in ribonucleoprotein complexes or by amino acids reveal that Ile-U packing is a frequent protein-RNA binding motif with key functional implications. We discuss parallels with eukaryotic translation termination by the release factor eRF1

    Termi-Luc: a versatile assay to monitor full-protein release from ribosomes

    Get PDF
    Termination of protein biosynthesis is an essential step of gene expression, during which a complete functional protein is released from the ribosome. Premature or inefficient termination results in truncated, non-functional or toxic proteins that may cause disease. Indeed, more than 10% of human genetic diseases are caused by nonsense mutations leading to premature termination. Efficient and sensitive approaches are required to study eukaryotic termination mechanisms and to identify potential therapeutics that modulate termination. Canonical radioactivity-based termination assays are complex, report on a short peptide release, and are incompatible with high-throughput screening. Here we describe a robust and simple in vitro assay to study the kinetics of full-protein release. The assay monitors luminescence upon release of nanoluciferase from a mammalian pre-termination complex. The assay can be used to record time-progress curves of protein release in a high-throughput format, making it optimal for studying release kinetics and for high-throughput screening for small molecules that modulate the efficiency of termination

    ArfB can displace mRNA to rescue stalled ribosomes

    Get PDF
    Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal alpha-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 A and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths

    Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome

    Get PDF
    Internal ribosome entry sites (IRESs) mediate cap-independent translation of viral mRNAs. Using electron cryo-microscopy of a single specimen, we present five ribosome structures formed with the Taura syndrome virus IRES and translocase eEF2*GTP bound with sordarin. The structures suggest a trajectory of IRES translocation, required for translation initiation, and provide an unprecedented view of eEF2 dynamics. The IRES rearranges from extended to bent to extended conformations. This inchworm-like movement is coupled with ribosomal inter-subunit rotation and 40S head swivel. eEF2, attached to the 60S subunit, slides along the rotating 40S subunit to enter the A site. Its diphthamide-bearing tip at domain IV separates the tRNA-mRNA-like pseudoknot I (PKI) of the IRES from the decoding center. This unlocks 40S domains, facilitating head swivel and biasing IRES translocation via hitherto-elusive intermediates with PKI captured between the A and P sites. The structures suggest missing links in our understanding of tRNA translocation

    mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding [preprint]

    Get PDF
    Although the elongating ribosome is an efficient helicase, certain mRNA stem-loop structures are known to impede ribosome movement along mRNA and stimulate programmed ribosome frameshifting via mechanisms that are not well understood. Using biochemical and single-molecule Förster resonance energy transfer (smFRET) experiments, we studied how frameshift-inducing stem-loops from E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) perturb translation elongation. We find that upon encountering the ribosome, the stem-loops strongly inhibit A-site tRNA binding and ribosome intersubunit rotation that accompanies translation elongation. Electron cryo-microscopy (cryo-EM) reveals that the HIV stem-loop docks into the A site of the ribosome. Our results suggest that mRNA stem-loops can transiently escape ribosome helicase by binding to the A site. Thus, the stem-loops can modulate gene expression by sterically hindering tRNA binding and inhibiting translation elongation

    mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding

    Get PDF
    Although the elongating ribosome is an efficient helicase, certain mRNA stem-loop structures are known to impede ribosome movement along mRNA and stimulate programmed ribosome frameshifting via mechanisms that are not well understood. Using biochemical and single-molecule Forster resonance energy transfer (smFRET) experiments, we studied how frameshift-inducing stem-loops from E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) perturb translation elongation. We find that upon encountering the ribosome, the stem-loops strongly inhibit A-site tRNA binding and ribosome intersubunit rotation that accompanies translation elongation. Electron cryo-microscopy (cryo-EM) reveals that the HIV stem-loop docks into the A site of the ribosome. Our results suggest that mRNA stem-loops can transiently escape the ribosome helicase by binding to the A site. Thus, the stem-loops can modulate gene expression by sterically hindering tRNA binding and inhibiting translation elongation

    Structural basis for +1 ribosomal frameshifting during EF-G-catalyzed translocation [preprint]

    Get PDF
    Frameshifting of mRNA during translation provides a strategy to expand the coding repertoire of cells and viruses. Where and how in the elongation cycle +1-frameshifting occurs remains poorly understood. We captured six ∼3.5-Å-resolution cryo-EM structures of ribosomal elongation complexes formed with the GTPase elongation factor G (EF-G). Three structures with a +1-frameshifting-prone mRNA reveal that frameshifting takes place during translocation of tRNA and mRNA. Prior to EF-G binding, the pre-translocation complex features an in-frame tRNA-mRNA pairing in the A site. In the partially translocated structure with EF-G, the tRNA shifts to the +1-frame codon near the P site, whereas the freed mRNA base bulges between the P and E sites and stacks on the 16S rRNA nucleotide G926. The ribosome remains frameshifted in the nearly post-translocation state. Our findings demonstrate that the ribosome and EF-G cooperate to induce +1 frameshifting during mRNA translocation

    Ribosome*RelA structures reveal the mechanism of stringent response activation

    Get PDF
    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 A wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit \u27closure\u27, providing insights into the dynamics of high-fidelity tRNA decoding

    Mechanism of ribosome rescue by ArfA and RF2

    Get PDF
    ArfA rescues ribosomes stalled on truncated mRNAs by recruiting release factor RF2, which normally binds stop codons to catalyze peptide release. We report two 3.2 A resolution cryo-EM structures - determined from a single sample - of the 70S ribosome with ArfA*RF2 in the A site. In both states, the ArfA C-terminus occupies the mRNA tunnel downstream of the A site. One state contains a compact inactive RF2 conformation. Ordering of the ArfA N-terminus in the second state rearranges RF2 into an extended conformation that docks the catalytic GGQ motif into the peptidyl-transferase center. Our work thus reveals the structural dynamics of ribosome rescue. The structures demonstrate how ArfA \u27senses\u27 the vacant mRNA tunnel and activates RF2 to mediate peptide release without a stop codon, allowing stalled ribosomes to be recycled
    • …
    corecore