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Abstract  

Accurate translation termination by release 

factors (RFs) is critical for the integrity of 

cellular proteomes. Premature termination 

on sense codons, for example, results in 

truncated proteins, whose accumulation 

could be detrimental to the cell. 

Nevertheless, some sense codons are 

prone to triggering premature termination, 

but the structural basis for this is unclear. To 

investigate premature termination, we 

determined a cryo-EM structure of the 

Escherichia coli 70S ribosome bound with 

RF1 in response to a UAU (Tyr) sense 

codon. The structure reveals that RF1 

recognizes a UAU codon similarly to a UAG 

stop codon, suggesting that sense codons 

induce premature termination because they 

structurally mimic a stop codon. 

Hydrophobic interaction between the 

nucleobase of U3 (the third position of the 

UAU codon) and conserved Ile 196 in RF1 

is important for misreading the UAU codon. 

Analyses of RNA binding in 

ribonucleoprotein complexes or by amino 

acids reveal that Ile–U packing is a frequent 

protein–RNA binding motif with key 

functional implications. We discuss parallels 

with eukaryotic translation termination by 

the release factor eRF1. 

 
 

Translation termination defines the lengths 

of all cellular proteins. Three stop codons—

UAA, UAG and UGA—signal the end of the 

mRNA open reading frame (ORF). A stop 

codon in the ribosomal A site is recognized 

by a bifunctional protein called a release 

factor (RF), which (i) recognizes stop 

codons and discriminates against sense 

codons, and (ii) catalyzes peptidyl-tRNA 

hydrolysis, releasing the peptide from the 

ribosome. Bacteria express two release 

factors: RF1 recognizes UAA/UAG codons 

and RF2 recognizes UAA/UGA codons. A 

single eukaryotic release factor eRF1 

recognizes all three stop codons.  

Accurate termination on stop codons is 

crucial for the cell and organism. Premature 

termination, either on sense codons or on 

premature stop codons arising from 

nonsense mutations, would result in 

accumulation of truncated proteins with 

compromised or toxic activities. Many 

genetic diseases are caused by premature 

stop codons (1,2), highlighting the 

deleterious effects of premature termination. 

In an intact ORF (i.e., no premature stop 

codon), however, near-stop codons may 

cause premature termination (3). Sense 

codons differing from the stop codon in the 

third-nucleotide (wobble) position are most 

promiscuous (4). A study measuring the 

activity of bacterial release factors on near-

stop codons identified the UAU sense 

codon as a “hot spot” for RF1 (4). We 

recently confirmed these findings (5), 

showing that RF1 can catalyze release on a 

UAU sense codon almost as efficiently as 

on a UAA codon when RF1 is in excess 

(Fig. 1A). Affinity of release factors to some 

sense codons does not lead to predominant 

premature termination in vivo due to 

efficient decoding of sense codons by 

aminoacyl-tRNAs, but is likely responsible 

for background levels of premature 

termination (3). 

The structural mechanism of stop-codon 

recognition was elucidated by high-

resolution crystal structures (6-9) and 

further investigated by molecular-dynamics 
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simulations (10). Release factors strongly 

discriminate against purines in the first 

position, so that no product can be detected 

when the ribosome encounters sense 

codons with A1 or G1 (i.e., A or G in 

position 1 of the A-site codon; Fig. 1A) 

(4,11,12). The structures showed that the 

Watson-Crick side of the first nucleotide 

faces the backbone of an -helix of RF1 or 

RF2, so the strict requirement for pyrimidine 

in the first position is explained by base 

recognition by a rigid structural element of 

release factor. The second and third 

positions are limited to purines, and interact 

with side chains of RF1 or RF2 (reviewed in 

refs (13-17)). The third nucleotide is also 

sandwiched between the conserved 16S 

rRNA nucleotide G530 and a side chain of 

release factor: Ile 196 of RF1 or Arg 218 of 

RF2 (E. coli numbering, unless noted 

otherwise). The Hoogsteen side of the third 

nucleotide (at atoms N6/O6 and N7) is 

stabilized by a conserved threonine (Thr 

194 in RF1 or Thr 216 in RF2). In the 

eukaryotic 80S termination complex formed 

with eRF1, the third position of the stop 

codon similarly packs between a purine and 

Ile 62 (Homo sapiens) of the essential NIKS 

motif of eRF1 (18), and interacts with Thr 58 

(19,20). 

In this work, we asked how a UAU sense 

codon is misread by RF1 as a stop codon, 

and why U in the third position is preferred 

over C, rendering UAU a more efficient 

“mis-terminator” than UAC. We determined 

a cryo-EM structure of the bacterial 70S 

ribosome complex that helps answer these 

questions. Our analyses suggest that the 

packing of U3 against Ile 196 of RF1 is 

critical for the preference of U over C. We 

find that the Ile-U packing is a prevalent 

motif in the ribosome and other protein-RNA 

structures, consistent with the role of Ile and 

other non-aromatic hydrophobic side chains 

in specific recognition of uridine. 

Mechanism of termination on the 

UAU sense codon 

We determined a cryo-EM structure of the 

E. coli 70S•RF1 complex formed in 

response to the UAU codon in the A site at 

3.7 Å average resolution (Fig. 1B and Table 

1), with local resolution achieving ~3 Å in 

ribosomal functional centers (Fig. 1C), 

allowing near-atomic interpretation (Figs. 1D 

and 1E). The overall conformations of 

release factor and the UAU codon are 

similar to those in canonical termination 

complexes formed with stop codons. We 

note one main difference between our 

structure and previous high-resolution 

70S•RF1 structures from Thermus 

thermophilus and heterologous systems. In 

our E. coli structure, domain 1 of RF1 binds 

both the large-subunit ribosomal protein L11 

and 23S ribosomal RNA of the L11 stalk, 

consistent with observations at lower 

resolutions for E. coli 70S•RF1 complexes 

formed on a stop codon (21). Specifically, 

hydrophobic Ile 29 of RF1 docks at the 

proline-rich region of L11 (aa Pro 21 to Pro 

25) and Phe 35 binds near A1095 of 23S 

rRNA, similar to that seen for RF2 

(6,8,22,23). In other high-resolution 

structures, however, domain 1 of RF1 is 

either unresolved (11,24-26) or binds near 

the L11 stalk without contacting it (7,9,23). 

In our structure, domain 1 is not as well 

resolved as other domains of RF1 (Fig. 1C), 

consistent with the idea that it is dynamic. 

The different positions of domain 1 in 

different structures highlight that interactions 

between domain 1 and the ribosome are 

dynamic and are likely important at early 
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stages of RF1 binding or during RF1 

dissociation, in keeping with functional 

interaction between RF1 and L11 (27-29). 

Density in the peptidyl-transferase and 

decoding centers (Fig. 1D and 1E) showed 

interactions similar to those found in 

canonical termination complexes with RF1 

(7,9). Consistent with the catalytic activity of 

RF1 on the UAU codon, the catalytic 
233GGQ235 loop is positioned next to the 

terminal nucleotide A76 of the P-site tRNA 

and is stabilized by interactions with A2602, 

which is essential for termination (Fig. 1D) 

(30-32). In the decoding center, the first two 

nucleotides of the UAU codon interact with 

the codon-recognition residues of RF1 

similarly to stop-codon nucleotides. The 

sense-codon U3 residue is sandwiched 

between Ile 194 of RF1 and G530 of 16S 

rRNA. Its carbonyl oxygen O4 faces the 

hydrogen-bond donors OH of Thr 196 and 

NH of Gln 185 (Fig. 1E and 2A), similar to 

the carbonyl oxygen of G3 in the UAG stop 

codon (Fig. 2B) (9). However, whereas Thr 

196 can form a hydrogen bond with one of 

two possible hydrogen-bond acceptors 

within G3 (at N7 and O6), the threonine can 

interact with a single acceptor  within U3 of 

the UAU sense codon. Moreover, the sense 

codon U3-G530 pyrimidine-purine stacking 

is expected to be less stable than the stop 

codon G3-G530 purine-purine stacking (33-

36). Thus, the interactions between RF1 

and UAU sense codon resemble those 

between RF1 and UAG stop codon, and 

suggest why RF1 recognizes UAU less 

efficiently than UAG (Fig. 1A).  

 

Unlike a UAU codon, a UAC sense codon 

inefficiently triggers peptide release, similar 

to sense codons that differ from stop codon 

at their second position, e.g., UCA or UGG 

(4). This might appear surprising, since the 

hydrogen-bonding valences of the amino 

group N4 of cytosine, placed similarly to the 

carbonyl oxygen O4 of uracil, could be 

satisfied by interactions with Thr196 (its OH 

group becoming the H-bond acceptor) and 

the amide group of Gln 185 (9) or with an 

ordered water molecule (10). In fact, just as 

U3 in UAU mimics a G3 in UAG stop codon, 

a C3 in UAC could mimic A3 in UAA stop 

codon. We propose that difference in 

hydrophobicity between the cytidine and 

uridine make termination on UAC less 

efficient than on UAU. Since C is 

substantially less hydrophobic than U (37-

39), packing of C between Ile 169 and G530 

would be less energetically favorable than 

the packing of U. Base-stacking energy of 

cytosine on guanosine is similar to that of 

uracil on guanosine (33-36), suggesting that 

the major discrimination between U and C in 

position 3 results from favorable 

hydrophobic packing of Ile 169 on U rather 

than on the less hydrophobic C. 

In summary, our structure shows that 

recognition of the sense codon UAU by RF1 

is similar to that of stop codon UAG. This 

suggests that other hot-spot sense codons 

likely undergo similar conformational 

rearrangements and are recognized by 

release factors similarly to stop codons, with 

which they have partial stereochemical 

resemblance. Structural analysis points at 

Ile-U packing being critical for making UAU 

a hot spot for mis-termination by RF1.  

 

Ile-U interactions in protein-RNA 

complexes 
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The role of Ile-U packing in mis-termination 

by RF1 prompted us to investigate whether 

Ile-U is a common interaction employed in 

protein-RNA recognition. Nucleotide 

stacking is the major stabilizing interaction 

in secondary and tertiary structures of 

nucleic acids. In protein-RNA complexes, 

the energy of unstacking a nucleotide from 

its stacking partner(s) is usually 

compensated by interaction between the 

aromatic base of the nucleotide and protein 

side chain(s). The best-characterized 

interactions include stacking of nucleotides 

on aromatic side chains and on positively 

charged side chains ((40) and references 

therein). Because stacking interactions 

involve a hydrophobic energy contribution 

(non-polar, non-electrostatic, solvent 

entropy) (34,41,42), nucleotides also stack 

on aliphatic hydrophobic side chains. 

Isoleucine is the most hydrophobic side 

chain, according to many hydrophobicity 

scales (43-46), and the uracil and adenine 

nucleobases are more hydrophobic than 

cytosine and guanine (37-39). Thus, uridine 

and adenosine are more likely than cytidine 

and guanosine to interact with isoleucine 

and other aliphatic side chains. Indeed, in 

computational simulations, U was the only 

nucleotide with a favorable free energy of 

binding to Ile (i.e., negative G) in 

methanol, which is thought to represent the 

environment for nucleic acid-protein 

interfaces more accurately than water (47). 

To test whether packing of isoleucine on 

uracil is among preferred protein-RNA 

interactions, we calculated the number of 

stacking interactions between RNA 

nucleotides and aliphatic, aromatic, or 

charged protein side chains in high-

resolution crystal structures of ribosomes, 

including the 2.4-Å resolution E.coli 70S 

ribosome (48), 2.5-Å resolution T. 

thermophilus 70S ribosome (49) and 3.0-Å 

resolution S. cerevisiae 80S ribosome (50). 

Collectively, these structures provide a large 

pool of protein-RNA interactions comprising 

~29,000 amino acids and ~19,000 

nucleotides. We normalized each type of 

stacking to the number of nucleotides of 

each type (i.e., number of amino acids per 

thousand nucleotides).  

These data show that Ile does indeed prefer 

to pack on uridine (Fig. 3). Ile-A packing is 

also well represented, whereas Ile packed 

the least on less hydrophobic C and G 

nucleotides. As expected, most of packing 

interactions of nucleotides occur with the 

positively charged Arg. Aliphatic, aromatic, 

and positively charged side chains pack 

more frequently on U or A (collectively > 

50%) than on the less hydrophobic C or G. 

This preference is notable for Ile (72%), Pro 

(85%), Phe (70%), and Tyr (65%). 

Negatively charged Asp and Glu are the 

least represented among protein side 

chains packing on aromatic bases, as 

expected. Interestingly, however, 70S 

rescue complexes formed with ArfA and 

RF2 on truncated mRNAs, employ the 

packing of Glu 30 of ArfA on G530 of 16S 

rRNA (51-55), suggesting functional roles 

for this underrepresented group of 

interactions. The carboxyl group of Glu 30 is 

stabilized by interactions with the side chain 

of Arg 213 of RF2 and with 2′-OH of G530. 

The specific affinity between U and Ile is 

also emphasized by amino acid-RNA affinity 

selection experiments, in which isoleucine 

selectively bound to UAU-containing RNA 

motifs (56,57). This specificity plays key 

functional roles in protein-RNA complexes. 

For example, isoleucine-U interaction is 
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critical for specific and efficient recognition 

of bovine immunodeficiency virus 

transactivation response element (TAR) by 

the Tat protein (58). Crystal structure 

revealed that the side chain of Ile 79 of Tat 

packs on the aromatic ring of U10 and 

stabilizes the U10–A13:U24 base triplet 

(59). In Drosophila, Sxl regulates alternative 

splicing by specific recognition of a U-rich 

sequence in pre-mRNA, involving a uridine 

sandwiched between two isoleucines (Ile-U-

Ile) (60). In archaeal RNase P, protein 

Rpp38 provides Ile 63 to stabilize bulged 

U19 of the enzyme’s RNA (61,62).  

Implications for eukaryotic 

termination 

Structural and biochemical work has yielded 

detailed insights into the mechanism of 

eukaryotic termination, but the mechanism 

of premature termination on sense codons 

in eukaryotes remains poorly understood. 

The UGG codon binds eRF1 (63-65), but 

termination activity was not detected in vitro 

(66). The sequences and structures of 

codon-recognition domains of eukaryotic 

and bacterial release factors are very 

different. Perhaps not surprisingly, 

therefore, structural recognition of stop 

codons by eukaryotic eRF1 also differs from 

that by bacterial release factors. For 

example, eRF1 recognizes the U-turn-like 

geometry of the stop codon (19,20,67) and 

a nucleotide downstream of the stop codon 

(68). However, recognition of the third 

nucleotide by eRF1 is remarkably similar to 

that by RF1. In the structures of 80S-eRF1 

complexes (19,20,67), the third nucleotide is 

sandwiched between a purine (second base 

of stop codon) and Ile 62 of the universally 

conserved NIKS motif of eRF1 (Fig. 2C). 

Furthermore, the O6 atom of the guanosine 

of the UAG stop codon (19) hydrogen bonds 

with Thr 58. The similar structural 

environment of the third nucleotide in the 

eukaryotic and bacterial complexes 

suggests that UAU might also be a hot spot 

for termination in eukaryotes. Premature 

termination on UAU, however, is likely less 

pronounced than on bacterial ribosomes, 

due to stringent codon discrimination 

facilitated by GTPase eRF3 (69,70).  

MATERIALS AND METHODS 
 
Preparation of the 

70S•mRNA(UAU)•tRNAfMet•RF1 complex 

C-terminally His-tagged E. coli RF1 

was purified as described (5). 70S 

ribosomes were prepared from E. coli 

(MRE600) as described (5), and stored in 

the ribosome-storage buffer (20 mM Tris-

HCl (pH 7.0), 100 mM NH4Cl, 12.5 mM 

MgCl2, 0.5 mM EDTA, 6 mM βME) at -80°C. 

Ribosomal 30S and 50S subunits were 

purified using sucrose gradient (10-35%) in 

a ribosome-dissociation buffer (20 mM Tris-

HCl (pH 7.0), 300 mM NH4Cl, 1.5 mM 

MgCl2, 0.5mM EDTA, 6 mM βME). The 

fractions containing 30S and 50S subunits 

were collected separately, concentrated and 

stored in the ribosome-storage buffer at -

80°C. E. coli tRNAfMet was purchased from 

Chemical Block. RNA, containing the Shine-

Dalgarno sequence and a linker to place the 

AUG codon in the P site and the UAU 

codon in the A site (GGC AAG GAG GUA 

AAA AUG UAU AAAAAA) was synthesized 

by IDT. 

The 70S•mRNA•tRNAfMet•RF1 complex 

was prepared by reconstitution in vitro. 1 

µM 30S subunit (all concentrations are 

specified for the final solution) were pre-

activated at 42°C for 5 minutes in the 

ribosome-reconstitution buffer (20 mM Tris-
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HCl (pH 7.0), 100 mM NH4Cl, 20.5 mM 

MgCl2, 0.5 mM EDTA, 6 mM βME). After 

pre-activation, 0.9 µM 50S subunit with 12 

µM mRNA and 5 µM tRNAfMet were added to 

the 30S solution and incubated for 15 

minutes at 37°C. Equal volume of 40 µM 

RF1 was then added resulting in the 

following final concentrations: ~0.45 µM 

70S, 6 µM mRNA, 2.5 µM tRNAfMet and 20 

µM RF1. The solution was incubated for 15 

minutes at 37°C and applied on cryo-EM 

grids at room temperature. 

 

Cryo-EM and image processing 

Holey-carbon grids (C-flat 1.2-1.3, 

Protochips) were glow discharged with 

20 mA with negative polarity for 30 seconds 

in a PELCO easiGlow glow discharge unit. 

1.5 μl of the 70S•mRNA•tRNAfMet•RF1 

complex was applied to the grids. The grids 

were blotted for 3.5 s at blotting power 8 at 

4°C and ~95% humidity and plunged into 

liquid ethane, using an FEI Vitrobot MK4. 

The grids were stored in liquid nitrogen.  

A dataset of 1,065,147 particles was 

collected as follows. 3,963 movies were 

collected using SerialEM  (71) on a Talos 

Arctica (FEI) microscope operating at 200 

kV equipped with a K2 Summit camera 

system (Gatan) with -0.7 to -1.7 μm 

defocus. Each exposure was acquired with 

continuous frame streaming with the 

exposure length of 80 frames per movie 

yielding a total dose of 37.7 e-/Å2. The 

nominal magnification was 22,000 and the 

corrected super-resolution pixel size at the 

specimen level was 0.944 Å. The frames for 

each movie were processed using IMOD 

(72). The movies were motion-corrected 

and frame averages were calculated using 

frames 3 to 42 within each movie, using 

alignframes (IMOD), after multiplication with 

the corresponding gain reference. cisTEM 

(73) was used to determine defocus values 

for each resulting frame average and for 

particle picking. The stack and FREALIGN 

parameter file were assembled in via 

cisTEM with the binning of 1x, 3x and 6x 

(box size of 480 for a non-binned stack). 

Data processing was performed 

essentially as described (74). FrealignX 

v9.11 in FrealignX mode was used for all 

steps of refinement and reconstruction (75). 

The 6x-binned image stack (1,065,147 

particles) was initially aligned to a ribosome 

reference (PDB 5J4D: (11)) without RF1 

and E-tRNA,  using 3 cycles of mode 3 

(global search) alignment, including data in 

the resolution range from 30 Å to 300 Å. 

Subsequently, the 6x binned stack was 

refined using mode 1 (refine) in the 

resolution ranges (sequentially): 30-300, 24-

300, 18-300 and 15-300 Å (3 cycles for 

each range). Using the 3x binned image 

stack, the particles were successively 

aligned in mode 1 (refine) by gradually 

increasing the high resolution limit to 12, 10, 

9, 8 and 7 Å (3 cycles for each resolution 

limit). In the last step, the unbinned (full-

resolution) image stack was used to 

successively align particles against the 

common reference using mode 1 (refine; 3 

cycles) at the resolution limit of 6 Å. 3D 

density reconstruction was obtained using 

60% of particles with highest scores. The 

map contained density for the P- and E-site 

tRNAs, mRNA and RF1. The resolution of 

the resulting reconstruction was ~3.7 Å 

(Fourier Shell Correlation (FSC) = 0.143); 

local resolution for the codon-recognition 

domain of RF1 in the decoding center and 

the catalytic domain in the peptidyl-

transferase center achieves ~3 Å resolution, 

allowing near-atomic-resolution 
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interpretation of nucleotide and side-chain 

interactions (Figs. 1C-E). Additional 

classification into 16 classes yielded 3 

classes (87% of all particles) with the 

occupancy of RF1 similar to that in the initial 

map. The initial reconstruction was B-factor 

sharpened using B-factors of -150, -200 and 

-225 Å2 in bfactor.exe (part of the FrealignX 

distribution) and used for model building 

and structure refinements. B-factor of -100 

Å2 was also used to visualize lower-

resolution details. FSC curve was calculated 

by FrealignX for even and odd particle half-

sets (Fig. 1B). Blocres was used to assess 

local resolution of the unfiltered and 

unmasked volume using a box size of 56 

pixels, step size of 10 pixels, and resolution 

criterion of FSC value at 0.143 (76). 

 

 

Model building and refinement 

Recently reported cryo-EM structure of 

E. coli 70S•ArfA•RF2 complex (55), 

excluding ArfA and RF2, was used as a 

starting model for structure refinement. The 

initial model of E. coli RF1 (domains 2-4) 

was extracted from the crystal structure of 

the 70S•RF1 complex (11) and domain 1 

was obtained by homology modeling from 

Thermus thermophilus RF1 (9) using 

SWISS-PROT (77). Initial protein and 

ribosome domain fitting into cryo-EM maps 

was performed using Chimera (78), followed 

by manual modeling using PyMOL (79). The 

linker between domain 1 and domain 2 (aa 

99-105) was not defined in the cryo-EM 

map and was not modeled.   

The structural model was refined by 

real-space simulated-annealing refinement 

using atomic electron scattering factors in 

RSRef (80,81) as described (82). 

Secondary-structure restraints, comprising 

hydrogen-bonding restraints for ribosomal 

proteins and base-pairing (distance and co-

planarity) restraints for RNA nucleotides, 

were implemented in CNS format (83). 

Refinement parameters in RSRef, such as 

the relative weighting of stereochemical 

restraints and experimental energy term, 

were optimized to produce the 

stereochemically optimal models that 

closely agree with the corresponding maps. 

Refinement was performed using B-factor 

sharpened maps: all-atom refinement (-200 

Å2), then local refinement of P-tRNA, 

mRNA, RF1 and neighboring residues (-225 

Å2) at starting annealing temperature 1000 

K. In the final stages, the structures were 

refined using phenix.real_space_refine (84) 

against a B-sharpened map (-150 Å2) at 300 

K,  followed by a round of refinement in 

RSRef applying harmonic restraints to 

preserve protein backbone geometry (-150 

Å2 and 300 K). The refined structural model 

closely agrees with the corresponding 

maps, as indicated by low real-space R-

factor of ~0.19 (RSRef) and high correlation 

coefficient of 0.86 (PHENIX, CC around 

atoms). The resulting models have good 

stereochemical parameters, characterized 

by low deviation from ideal bond lengths 

and angles, low number of protein-

backbone and rotamer outliers, as shown in 

Table 1.  

Structure superpositions and 

comparisons were performed in PyMOL.  

Structural analyses of protein side chain 

interactions with RNA nucleotides 

The following ribosome structures were 

downloaded from RCSB (www.rcsb.org) for 

the analyses of amino-acid-nucleotide 

interactions: E. coli 70S ribosome (PDB 

4YBB (48)), T. thermophilus 70S ribosome 
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(PDB 4Y4P: (49) and S. cerevisiae 80S 

ribosome (PDB 4V88: (50).  PyMOL was 

used to calculate the number of side chains 

packed on RNA nucleotides (#aa per 1000 

nucleotides, Fig. 3). The following distance 

cutoff criterion was used: at least one side-

chain non-hydrogen atom (i.e. any atom 

excluding the backbone atoms) within 3.7 Å 

from the following carbon atoms of the 

aromatic base of a nucleotide: C2, C4 or C5 

(U or C), C4, C5 or C6 (A) and C2, C4, C5 

or C6 (G). Selected amino acids were 

confirmed by visual inspection of the PDB 

structures in PyMOL, supporting the 

stringency of the selection criterion. 

Structure Accession Codes 

The cryo-EM map and PDB coordinates 

have been deposited in EMDB and the 

Protein Data Bank with accession codes 

EMD-7970 and 6DNC. 
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Table 1 

Cryo-EM data collection and refinement statistics 

  
Data collection  
EM equipment FEI Talos Arctica 
Voltage (kV) 200 
Detector Gatan K2 Summit 
Software 
Pixel size (Å) 

SerialEM 
0.944 

Electron dose (e
-
/Å

2
) 37.7 (used 19) 

Defocus range (μm) -0.7 to -1.7 
Data set size (# particles) 
Reconstruction 

1,065,147 

Software cisTEM and Frealign 
v9.10-9.11 

Number of particles used 
Final resolution (Å, FSC=0.143) 

639,088  
3.7 

Model composition  
Non-hydrogen atoms 152439 
Protein residues 6520 
RNA bases 4728 
Refinement  
Software RSRef and Phenix 
Correlation Coeff 0.86 
R-factor 0.186 
Ramachandran-plot statistics (%)  
  Favored (overall) 86.8 
  Allowed (overall) 12.4 
  Outlier (overall) 
Rotamer outliers (%) 
C-beta deviations 

0.9 
0.02 

0 
R.m.s. deviations  
Bond length (Å) 0.005 
Bond angle (˚) 0.84 
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Figure legends 

Figure 1. (A) Michaelis-Menten curves for in vitro formyl-methionine release from fMet-tRNA by RF1 on the stop 

codon UAA and sense codons UAU, UGG and AAA (adopted from refs (5,11). (B) Cryo-EM structure of the 70S•RF1 

complex formed on the UAU sense codon. Fourier shell correlation (FSC) curve is shown for the 70S•RF1 cryo-EM 

map (lower left). (C) Local resolution of RF1 in the cryo-EM map, determined using Blocres (76).  RF1 is oriented 

similarly to the view shown in panel B. The map was sharpened by applying a B-factor of −100 Å
2
 and is shown at 2σ, 

colored using a resolution scale ranging from 2.8 Å to 5.3 Å (left). (D) Cryo-EM map (mesh) in the peptidyl-transferase 

center (PTC). (E) Cryo-EM map (mesh) in the decoding center (DC). In structural models, the large 50S ribosomal 

subunit is shown in cyan, small 30S subunit in yellow, RF1 in green, mRNA in dark blue, P-site tRNA in orange and 

E-site tRNA in pink. Domains of RF1 are labeled in panels B and C. 

 

Figure 2. Recognition of the third nucleotide of the UAU and UAG codons by RF1 and eRF1. (A) Interactions of 

Escherichia coli RF1 with U3 of the UAU sense codon in the 70S ribosome (this work) (B) Interactions of Thermus 

thermophilus RF1 with G3 of the UAG stop codon in the 70S ribosome (PDB 4V7P; (9)). Thr 198 forms one of two 

possible hydrogen bonds with G3 (shown with the dashed and dotted lines). (C) Interactions of Oryctolagus cuniculus 

eRF1 with G3 of the UAG stop codon in the 80S ribosome (PDB 3JAH;  (19)).  
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Figure 3. Distribution of amino acid side chains packing on the four types of RNA nucleotide bases (the more 

hydrophobic bases U and A are shown in  gray, C and G – in purple) in three high-resolution ribosome structures 

from E. coli (PDB 4YBB: (48)),  T. thermophilus (PDB 4Y4P: (49) and S. cerevisiae (PDB 4V88: (50).   
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