3,871 research outputs found

    Negative refraction in natural ferromagnetic metals

    Full text link
    It is generally believed that Veselago's criterion for negative refraction cannot be fulfilled in natural materials. However, considering imaginary parts of the permittivity ({\epsilon}) and permeability ({\mu}) and for metals at not too high frequencies the general condition for negative refraction becomes extremely simple: Re({\mu}) Re(n) < 0. Here we demonstrate experimentally that in such natural metals as pure Co and FeCo alloy the negative values of the refractive index are achieved close to the frequency of the ferromagnetic resonance. Large values of the negative refraction can be obtained at room temperature and they can easily be tuned in moderate magnetic fields

    Permafrost, landscape and ecosystem responses to late Quaternary warm stages in Northeast Siberia

    Get PDF
    Permafrost, landscape and ecosystem responses to late Quaternary warm stages in Northeast Siberia S. Wetterich1, F. Kienast2, L. Schirrmeister1, M. Fritz1, A. Andreev3, P. Tarasov4 1Alfred Wegener Institute for Polar and Marine Research, Department of Periglacial Research, Potsdam, Germany; 2Senckenberg Research Institute and Natural History Museum, Research Station for Quaternary Palaeontology, Weimar, Germany; 3Institute of Geology and Mineralogy, University of Cologne, Germany; 4Institute of Geological Sciences, Free University Berlin, Germany Perennially frozen ground is widely distributed in Arctic lowlands and beyond. Permafrost responds sensitive to changes in climate conditions. Climate-driven dynamics of landscape, sedimentation and ecology in periglacial regions are frequently recorded in permafrost deposits. The study of late Quaternary permafrost can therefore reveal past glacial-interglacial and stadialinterstadial environmental dynamics. One of the most striking processes under warming climate conditions is the extensive thawing of permafrost (thermokarst) and subsequent surface subsidence. Thermokarst basins promote the development of lakes, whose sedimentological and paleontological records give insights into past interglacial and interstadial (warm). In this paper we present results of qualitative and quantitative reconstructions of climate and environmental conditions for the last Interglacial (MIS 5e, Kazantsevo; ca. 130 to 115 ka ago), the lateglacial Allerød Interstadial (ca. 13 to 11 uncal. ka BP), and the early Holocene (ca. 10.5 to 8 uncal. ka BP). The study was performed in course of the IPY project #15 ‘Past Permafrost’ with permafrost deposits exposed at the coasts of the Dmitry Laptev Strait (East Siberian Sea, East Siberia). The reconstruction based on fossil-rich findings of plants (pollen, macro-remains) and invertebrates (beetles, chironomids, ostracods gastropods). Interglacial vegetation dynamics are reflected in the pollen records by changes from early interglacial grass-sedge-tundra to shrub-tundra during the interglacial thermal optimum followed by grass-sedge-tundra vegetation at the end of the Kazantsevo warm period. Terrestrial beetle and plant remains prove the former existence of open forest tundra with Dahurian larch, grey alder and boreal shrubs interspersed with patches of steppes and meadows during the interglacial thermal optimum. Mean temperature reconstructions of the warmest month (MTWA, TJuly) for the interglacial thermal optimum are based on quantitative chironomid transfer functions revealed a TJuly of 12.9 ± 0.9 °C. The TJuly reconstructed by plant macrofossils amounts to 13.2 ± 0.5 °C, and the pollen-based TJuly reaches 14.3 ± 3.3 °C. Low net precipitation is reflected by steppe plants and beetles. The temperature reconstruction based on three independent approaches. Nethertheless, all methods consistently indicate an interglacial TJuly about 10 °C higher than today, which is interpreted as a result of a combination of increased insolation and higher climatic continentality during the last Interglacial. Grass-sedge dominated tundra vegetation occurred during the lateglacial to Holocene transition which was replaced by shrub tundra during the early Holocene. The presence of Salix and Betula pollen reflects temperatures about 4 °C higher than present between 12 to 11 uncal. ka BP, during the Allerød Interstadial, but shrubs disappeared in the following Younger Dryas stadial, reflecting a climate deterioration. Alnus fruticosa, Betula nana, Poaceae and Cyperaceae dominate early Holocene pollen spectra. Pollen-based reconstructions point to TJuly 4 °C warmer than present. Shrubs gradually disappeared from coastal areas after 7.6 uncal. ka BP when vegetation cover became similar to modern wet tundra. Thermokarst acted as response to warming conditions on landscape scale in permafrost regions. Concurrent changes in relief, hydrology and ecosystems are obvious and detectable by analyses of the paleontological record preserved in thermokarst deposits

    Rapid resistivity imaging for marine CSEM surveys with two transmitter polarizations: An application to the North Alex mud volcano

    Get PDF
    To image the internal resistivity structure of the North Alex mud volcano offshore Egypt, the marine electromagnetics group at the Helmholtz Centre for Ocean Research Kiel (GEOMAR) developed and conducted a novel transient marine controlled-source electromagnetic experiment. The system, which was specifically developed to image the mud volcano, is also generally suitable for surveys of other small seafloor targets, such as gas-hydrate reservoirs, fluid-flow features, and submarine massive-sulfide deposits. An electric bipole antenna is set down by a remotely operated vehicle on the seafloor sequentially in two perpendicular polarizations at each transmission station. Two orthogonal horizontal electric field components are recorded on the seabed by an array of independently deployed nodal receivers (RXs). With two transmitter polarizations, the unique acquisition geometry of the system provides a very rich data set. However, for this geometric setup, conventional marine electromagnetic interpretation schemes (such as normalized magnitude variation with offset plots) have been difficult to implement. We have developed a simple imaging technique, which can be used for a first-step mapping of seafloor apparent resistivity with the GEOMAR system. Images can be produced in just a few minutes on a regular laptop computer, and the robustness of the approach was demonstrated using two synthetic data sets from simple seafloor models. The method was then applied to the real data acquired at the North Alex mud volcano in 2008. Results found increased apparent sediment resistivities of up to 4 Omega m near the center of the mud volcano occurring at source-RX offsets greater than 500 m, which mapped to apparent depths of greater than 150 m. This may be caused by large quantities of free gas or freshwater in the sediment pore space

    On electric fields produced by inductive sources on the seafloor

    Get PDF
    The transient electromagnetic (TEM) method has recently been proposed as a tool for mineral exploration on the seafloor. Similar to airborne TEM surveys conducted on land, marine TEM systems can use a concentric or coincident wire-loop transmitter and receiver towed behind a ship. Such towed-loop TEM surveys can be further augmented by placing additional stationary receivers on the seafloor throughout the survey area. We examine the electric fields measured by remote receivers from an inductive source transmitter within a 1D layered earth model. At sea, it is conceivable to deploy either a horizontal transmitter (such as the analogous standard airborne configuration) or a more exotic vertical transmitter. Therefore, we study and compare the sensitivity of the vertical and horizontal towed-loop systems with a variety of seafloor conductivity structures. Our results indicate that the horizontal loop system is more sensitive to the thickness of a buried conductive layer and would be advantageous over the vertical loop system in characterizing the size of a shallowly buried mineralized zone. The vertical loop system is more sensitive to a resistive layer than the horizontal loop system. The vertical electric field produced by the vertical loop transmitter is sensitive to greater depths than the horizontal fields, and measuring the vertical field at the receivers would therefore be advantageous. We also conducted a novel test of a towed horizontal loop system with remote dipole receivers in a marine setting. The system was tested at the Palinuro volcanic complex in the Tyrrhenian Sea, a site of known massive sulfide mineralization. Preliminary results are consistent with shallowly buried material in the seafloor of conductivities >1  S/m

    The impact of patient-dependent risk factors on morbidity and mortality following gastric surgery for malignancies

    Get PDF
    Gastric cancer remains a leading cause of mortality worldwide. The treatment for gastric cancer is multimodal, in which gastrectomy remains the only curative approach. However, gastric resection is often associated with increased morbidity and mortality rates, depending on several factors. These factors can be attributed to the patient as comorbidities or effects of the disease upon him and, on the other hand, there are risk factors independent of the patient, such as aspects of the tumor (type, staging, location), experience of the surgical and anesthetic team, logistics of the hospital, yield of adjuvant therapies etc. We recognize the fact that patient-related risk factors are often overlooked and not taken into consideration prior to surgery, thus becoming a source of morbidity and mortality. These factors are more susceptible to modulating in order to better select candidates for gastric resection and thus create a better outcome. Therefore, identifying and modulating patient-related risk factors is paramount in order to decrease the incidence of morbidity and mortality following gastric resections

    Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method

    Full text link
    Claim reserving is primarily accomplished using macro-level models, with the Chain-Ladder method being the most widely adopted method. These methods are usually constructed heuristically and rely on oversimplified data assumptions, neglecting the heterogeneity of policyholders, and frequently leading to modest reserve predictions. In contrast, micro-level reserving leverages on stochastic modeling with granular information for improved predictions, but usually comes at the cost of more complex models that are unattractive to practitioners. In this paper, we introduce a simple macro-level type approach that can incorporate granular information from the individual level. To do so, we imply a novel framework in which we view the claim reserving problem as a population sampling problem and propose a reserve estimator based on inverse probability weighting techniques, with weights driven by policyholders' attributes. The framework provides a statistically sound method for aggregate claim reserving in a frequency and severity distribution-free fashion, while also incorporating the capability to utilize granular information via a regression-type framework. The resulting reserve estimator has the attractiveness of resembling the Chain-Ladder claim development principle, but applied at the individual claim level, so it is easy to interpret and more appealing to practitioners
    • …
    corecore