8,634 research outputs found
Estimation of the particle-antiparticle correlation effect for pion production in heavy ion collisions
Estimation of the back-to-back pi-pi correlations arising due to evolution of
the pionic field in the course of pion production process is given for central
heavy nucleus collisions at moderate energies.Comment: 6 LaTeX pages + 5 ps figure
Two-photon correlations as a sign of sharp transition in quark-gluon plasma
The photon production arising due to time variation of the medium has been
considered. The Hamilton formalism for photons in time-variable medium (plasma)
has been developed with application to inclusive photon production. The results
have been used for calculation of the photon production in the course of
transition from quark-gluon phase to hadronic phase in relativistic heavy ion
collisions. The relative strength of the effect as well as specific two- photon
correlations have been evaluated. It has been demonstrated that the opposite
side two-photon correlations are indicative of the sharp transition from the
quark-gluon phase to hadrons.Comment: 23 pages, 2 figure
Squeezed Correlations and Spectra for Mass-Shifted Bosons
Huge back-to-back correlations are shown to arise for thermal ensembles of
bosonic states with medium-modified masses. The effect is experimentally
observable in high energy heavy ion collisions.Comment: 4 pages (RevTex) including 2 eps figures via psfig, published versio
Novel relativistic plasma excitations in a gated two-dimensional electron system
The microwave response of a two-dimensional electron system (2DES) covered by
a conducting top gate is investigated in the relativistic regime for which the
2D conductivity . Weakly damped plasma waves are
excited in the gated region of the 2DES. The frequency and amplitude of the
resulting plasma excitations show a very unusual dependence on the magnetic
field, conductivity, gate geometry and separation from the 2DES. We show that
such relativistic plasmons survive for temperatures up to 300 K, allowing for
new room-temperature microwave and terahertz applications.Comment: 9 pages, 7 figure
Hydrodynamic description of transport in strongly correlated electron systems
We develop a hydrodynamic description of the resistivity and
magnetoresistance of an electron liquid in a smooth disorder potential. This
approach is valid when the electron-electron scattering length is sufficiently
short. In a broad range of temperatures, the dissipation is dominated by heat
fluxes in the electron fluid, and the resistivity is inversely proportional to
the thermal conductivity, . This is in striking contrast with the
Stokes flow, in which the resistance is independent of and
proportional to the fluid viscosity. We also identify a new hydrodynamic
mechanism of spin magnetoresistance
Local transport in a disorder-stabilized correlated insulating phase
We report the experimental realization of a correlated insulating phase in 2D
GaAs/AlGaAs heterostructures at low electron densities in a limited window of
background disorder. This has been achieved at mesoscopic length scales, where
the insulating phase is characterized by a universal hopping transport
mechanism. Transport in this regime is determined only by the average electron
separation, independent of the topology of background disorder. We have
discussed this observation in terms of a pinned electron solid ground state,
stabilized by mutual interplay of disorder and Coulomb interaction.Comment: 4+delta pages, 4 figures, To appear in the Physical Review B (Rapid
Comm
- …