7,663 research outputs found

    Crossed Andreev reflection in diffusive contacts

    Full text link
    Crossed Andreev reflection in multiterminal structures in the diffusive regime is addressed within the quasiclassical Keldysh-Usadel formalism. The elastic cotunneling and crossed Andreev reflection of quasiparticles give nonlocal currents and voltages (depending on the actual biasing of the devices) by virtue of the induced proximity effect in the normal metal electrodes. The magnitude of the nonlocal processes is found to scale with the square of the barrier transparency and to decay exponentially with interface spacing. Nonlocal cotunneling and crossed Andreev conductances are found to contribute equally to the nonlocal current, which is of relevance to the use of normal metal-superconducting heterostructures as sources of entanglement

    Exotic Hybrid Quark Potentials

    Full text link
    We use gauge/string duality to model some hybrid heavy-quark potentials. The potentials under consideration can't be described by a single Nambu-Goto string. This is why we call them "exotic". For Σu−\Sigma_u^-, the result is in quite good agreement with lattice simulations.Comment: 14 pages, 5 figures; v2: typos correcte

    Andreev current enhancement and subgap conductance of superconducting hybrid structures in the presence of a small spin-splitting field

    Get PDF
    We investigate the subgap transport properties of a S-F-Ne structure. Here S (Ne) is a superconducting (normal) electrode, and F is either a ferromagnet or a normal wire in the presence of an exchange or a spin- splitting Zeeman field respectively. By solving the quasiclassical equations we first analyze the behavior of the subgap current, known as the Andreev current, as a function of the field strength for different values of the voltage, temperature and length of the junction. We show that there is a critical value of the bias voltage V * above which the Andreev current is enhanced by the spin-splitting field. This unexpected behavior can be explained as the competition between two-particle tunneling processes and decoherence mechanisms originated from the temperature, voltage and exchange field respectively. We also show that at finite temperature the Andreev current has a peak for values of the exchange field close to the superconducting gap. Finally, we compute the differential conductance and show that its measurement can be used as an accurate way of determining the strength of spin-splitting fields smaller than the superconducting gap.Comment: 5 pages, 4 figure

    Electron cooling by diffusive normal metal - superconductor tunnel junctions

    Full text link
    We investigate heat and charge transport in NN'IS tunnel junctions in the diffusive limit. Here N and S are massive normal and superconducting electrodes (reservoirs), N' is a normal metal strip, and I is an insulator. The flow of electric current in such structures at subgap bias is accompanied by heat transfer from the normal metal into the superconductor, which enables refrigeration of electrons in the normal metal. We show that the two-particle current due to Andreev reflection generates Joule heating, which is deposited in the N electrode and dominates over the single-particle cooling at low enough temperatures. This results in the existence of a limiting temperature for refrigeration. We consider different geometries of the contact: one-dimensional and planar, which is commonly used in the experiments. We also discuss the applicability of our results to a double-barrier SINIS microcooler.Comment: 9 pages, 4 figures, submitted to Phys. Rev.

    Electron cooling in diffusive normal metal - superconductor tunnel junctions with a spin-valve ferromagnetic interlayer

    Get PDF
    We investigate heat and charge transport through a diffusive SIF1F2N tunnel junction, where N (S) is a normal (superconducting) electrode, I is an insulator layer and F1,2 are two ferromagnets with arbitrary direction of magnetization. The flow of an electric current in such structures at subgap bias is accompanied by a heat transfer from the normal metal into the superconductor, which enables refrigeration of electrons in the normal metal. We demonstrate that the refrigeration efficiency depends on the strength of the ferromagnetic exchange field h and the angle {\alpha} between the magnetizations of the two F layers. As expected, for values of h much larger than the superconducting order parameter \Delta, the proximity effect is suppressed and the efficiency of refrigeration increases with respect to a NIS junction. However, for h \sim \Delta the cooling power (i.e. the heat flow out of the normal metal reservoir) has a non-monotonic behavior as a function of h showing a minimum at h \approx \Delta. We also determine the dependence of the cooling power on the lengths of the ferromagnetic layers, the bias voltage, the temperature, the transmission of the tunneling barrier and the magnetization misalignment angle {\alpha}.Comment: 8 pages, 7 figure

    Mean field theory of superglasses

    Full text link
    We study the interplay of superfluidity and glassy ordering of hard core bosons with random, frustrating interactions. This is motivated by bosonic systems such as amorphous supersolid, disordered superconductors with preformed pairs, and helium in porous media. We analyze the fully connected mean field version of this problem, which exhibits three low-temperature phases, separated by two continuous phase transitions: an insulating, glassy phase with an amorphous frozen density pattern, a nonglassy superfluid phase, and an intermediate phase, in which both types of order coexist. We elucidate the nature of the phase transitions, highlighting in particular the role of glassy correlations across the superfluid-insulator transition. The latter suppress superfluidity down to T=0, due to the depletion of the low-energy density of states, unlike in the standard BCS scenario. Further, we investigate the properties of the coexistence (superglass) phase. We find anticorrelations between the local order parameters and a nonmonotonous superfluid order parameter as a function of T. The latter arises due to the weakening of the glassy correlation gap with increasing temperature. Implications of the mean field phenomenology for finite dimensional bosonic glasses with frustrating Coulomb interactions are discussed.Comment: 14 pages, 3 figures, comparison with Monte Carlo data adde

    Excitation gap of a graphene channel with superconducting boundaries

    Full text link
    We calculate the density of states of electron-hole excitations in a superconductor/normal-metal/superconductor (SNS) junction in graphene, in the long-junction regime that the superconducting gap is much larger than the Thouless energy. If the normal region is undoped, the excitation spectrum consists of neutral modes that propagate along the boundaries - transporting energy but no charge. These ``Andreev modes'' are a coherent superposition of electron states from the conduction band and hole states from the valence band, coupled by specular Andreev reflection at the superconductor. The lowest Andreev mode has an excitation gap, which depends on the superconducting phase difference across the SNS graphene channel. At high doping the excitation gap vanishes and the usual gapless density of states of Andreev levels is recovered. We use our results to calculate the superconducting phase dependence of the thermal conductance of the graphene channel.Comment: 8 pages, 10 figure
    • …
    corecore