73 research outputs found

    Physiogenomic analysis of weight loss induced by dietary carbohydrate restriction

    Get PDF
    BACKGROUND: Diets that restrict carbohydrate (CHO) have proven to be a successful dietary treatment of obesity for many people, but the degree of weight loss varies across individuals. The extent to which genetic factors associate with the magnitude of weight loss induced by CHO restriction is unknown. We examined associations among polymorphisms in candidate genes and weight loss in order to understand the physiological factors influencing body weight responses to CHO restriction. METHODS: We screened for genetic associations with weight loss in 86 healthy adults who were instructed to restrict CHO to a level that induced a small level of ketosis (CHO ~10% of total energy). A total of 27 single nucleotide polymorphisms (SNPs) were selected from 15 candidate genes involved in fat digestion/metabolism, intracellular glucose metabolism, lipoprotein remodeling, and appetite regulation. Multiple linear regression was used to rank the SNPs according to probability of association, and the most significant associations were analyzed in greater detail. RESULTS: Mean weight loss was 6.4 kg. SNPs in the gastric lipase (LIPF), hepatic glycogen synthase (GYS2), cholesteryl ester transfer protein (CETP) and galanin (GAL) genes were significantly associated with weight loss. CONCLUSION: A strong association between weight loss induced by dietary CHO restriction and variability in genes regulating fat digestion, hepatic glucose metabolism, intravascular lipoprotein remodeling, and appetite were detected. These discoveries could provide clues to important physiologic adaptations underlying the body mass response to CHO restriction

    Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease

    Get PDF
    The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.We gratefully acknowledge funding that supported this research support from the Ryerson University Faculty of Science (CNA), as well as funding support in the form of a CIFAR Catalyst Grant (JPJ and CNA), an NSERC Alliance Grant (CNA) and the Ryerson COVID-19 SRC Response Fund award (CNA). BW is partly supported by CIFAR AI Chairs Program. This work was also supported by a Mitacs award (BW), the European Union’s Horizon 2020 research and innovation program under a Marie Sklodowska-Curie grant (ER), by the CIFAR Azrieli Global Scholar program (JPJ), by the Ontario Early Researcher Awards program (JPJ and CNA), and by the Canada Research Chairs program (JPJ). We also thank Dr. James Rini (University of Toronto) for the kind gift of the 9.8E12 antibody used to detect the 229E Spike protein, and Dr. Scott Gray-Owen (University of Toronto) for the kind gift of the NL63 human coronavirus.Peer reviewe

    Physiogenomic comparison of human fat loss in response to diets restrictive of carbohydrate or fat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic factors that predict responses to diet may ultimately be used to individualize dietary recommendations. We used physiogenomics to explore associations among polymorphisms in candidate genes and changes in relative body fat (Δ%BF) to low fat and low carbohydrate diets.</p> <p>Methods</p> <p>We assessed Δ%BF using dual energy X-ray absorptiometry (DXA) in 93 healthy adults who consumed a low carbohydrate diet (carbohydrate ~12% total energy) (LC diet) and in 70, a low fat diet (fat ~25% total energy) (LF diet). Fifty-three single nucleotide polymorphisms (SNPs) selected from 28 candidate genes involved in food intake, energy homeostasis, and adipocyte regulation were ranked according to probability of association with the change in %BF using multiple linear regression.</p> <p>Results</p> <p>Dieting reduced %BF by 3.0 ± 2.6% (absolute units) for LC and 1.9 ± 1.6% for LF (p < 0.01). SNPs in nine genes were significantly associated with Δ%BF, with four significant after correction for multiple statistical testing: rs322695 near the retinoic acid receptor beta (<it>RARB</it>) (p < 0.005), rs2838549 in the hepatic phosphofructokinase (<it>PFKL</it>), and rs3100722 in the histamine N-methyl transferase (<it>HNMT</it>) genes (both p < 0.041) due to LF; and the rs5950584 SNP in the angiotensin receptor Type II (<it>AGTR2</it>) gene due to LC (p < 0.021).</p> <p>Conclusion</p> <p>Fat loss under LC and LF diet regimes appears to have distinct mechanisms, with <it>PFKL </it>and <it>HNMT </it>and <it>RARB </it>involved in fat restriction; and <it>AGTR2 </it>involved in carbohydrate restriction. These discoveries could provide clues to important physiologic mechanisms underlying the Δ%BF to low carbohydrate and low fat diets.</p

    Advanced Algorithms for Molecular Dynamics Simulation

    No full text

    Physiogenomics

    No full text

    Physiogenomics

    No full text
    corecore