28 research outputs found

    Neupositionierung von Hochschulrechenzentren als Teil der Community Informatics

    Get PDF
    Hochschulrechenzentren und Hochschulinformatikdienste haben nach Ansicht der Autoren hohes Potential, auch über die Hochschulen hinaus innovative Dienste anzubieten. Sie könnten damit dem wachsenden gesellschaftlichen Bedürfnis nach vertrauenswürdigen IT-Angeboten entsprechen und zugleich wertvolle Impulse für die Hochschulentwicklung geben. Der Aufsatz fasst die wissenschaftliche Diskussion dazu zusammen, erhebt typische aktuelle Angebote der HRZ und skizziert ein mögliches Szenario. Er zeigt summarisch auf, wie solch ein Szenario implementiert werden könnte, und diskutiert kritisch Bedeutung und Wirkung eines solchen Projektes. 30.03.2015 | Andreas König (Calw) & Steven Strehl (Berlin

    Dopamine Modulates Homeostatic Excitatory Synaptic Plasticity of Immature Dentate Granule Cells in Entorhino-Hippocampal Slice Cultures

    Get PDF
    Homeostatic plasticity mechanisms maintain neurons in a stable state. To what extent these mechanisms are relevant during the structural and functional maturation of neural tissue is poorly understood. To reveal developmental changes of a major homeostatic plasticity mechanism, i.e., homeostatic excitatory synaptic plasticity, we analyzed 1-week- and 4-week-old entorhino-hippocampal slice cultures and investigated the ability of immature and mature dentate granule cells (GCs) to express this form of plasticity. Our experiments demonstrate that immature GCs are capable of adjusting their excitatory synaptic strength in a compensatory manner at early postnatal stages, i.e., in 1-week-old preparations, as is the case for mature GCs. This ability of immature dentate GCs is absent in 4-week-old slice cultures. Further investigations into the signaling pathways reveal an important role of dopamine (DA), which prevents homeostatic synaptic up-scaling of immature GCs in young cultures, whereas it does not affect immature and mature GCs in 4-week-old preparations. Together, these results disclose the ability of immature GCs to express homeostatic synaptic plasticity during early postnatal development. They hint toward a novel role of dopaminergic signaling, which may gate activity-dependent changes of newly born neurons by blocking homeostasis

    Evaluation of immunological escape mechanisms in a mouse model of colorectal liver metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The local and systemic activation and regulation of the immune system by malignant cells during carcinogenesis is highly complex with involvement of the innate and acquired immune system. Despite the fact that malignant cells do have antigenic properties their immunogenic effects are minor suggesting tumor induced mechanisms to circumvent cancer immunosurveillance. The aim of this study is the analysis of tumor immune escape mechanisms in a colorectal liver metastases mouse model at different points in time during tumor growth.</p> <p>Methods</p> <p>CT26.WT murine colon carcinoma cells were injected intraportally in Balb/c mice after median laparotomy using a standardized injection technique. Metastatic tumor growth in the liver was examined by standard histological procedures at defined points in time during metastatic growth. Liver tissue with metastases was additionally analyzed for cytokines, T cell markers and Fas/Fas-L expression using immunohistochemistry, immunofluorescence and RT-PCR. Comparisons were performed by analysis of variance or paired and unpaired <it>t </it>test when appropriate.</p> <p>Results</p> <p>Intraportal injection of colon carcinoma cells resulted in a gradual and time dependent metastatic growth. T cells of regulatory phenotype (CD4+CD25+Foxp3+) which might play a role in protumoral immune response were found to infiltrate peritumoral tissue increasingly during carcinogenesis. Expression of cytokines IL-10, TGF-β and TNF-α were increased during tumor growth whereas IFN-γ showed a decrease of the expression from day 10 on following an initial increase. Moreover, liver metastases of murine colon carcinoma show an up-regulation of FAS-L on tumor cell surface with a decreased expression of FAS from day 10 on. CD8+ T cells express FAS and show an increased rate of apoptosis at perimetastatic location.</p> <p>Conclusions</p> <p>This study describes cellular and macromolecular changes contributing to immunological escape mechanisms during metastatic growth in a colorectal liver metastases mouse model simulating the situation in human cancer.</p

    Design and implementation of the international genetics and translational research in transplantation network

    Get PDF

    The role of synaptopodin in neuroinflammation and retinoic acid-mediated synaptic plasticity in the mouse hippocampus

    No full text
    The human brain is one of the most complex biological systems. More than 100 billion neurons build networks that control basic body functions and highly coordinated movements, enable us to express emotions, feelings and thoughts and to store memories over years and even throughout life time. Ultimately, “We are who we are because of what we learn and what we remember” (Kandel 2006). Under pathological conditions, the brain function is challenged. Most if not all neurological diseases have in common that they are either triggered and/or accompanied by inflammatory processes of brain tissue, referred to as neuroinflammation. Such inflammatory processes directly affect an elementary neural mechanism relevant for learning and memory: synaptic plasticity. Indeed, neurons are highly dynamic structures and able to respond to specific stimuli with morphological, functional and molecular adaptations that modify the strength and number of neuronal contact sides (synapses). Hence, the main motivation of this thesis was to identify the neural targets through which inflammation affects brain function and synaptic plasticity in particular. The principles of synaptic plasticity have been studied intensively in the hippocampus, an anatomical structure localized within the temporal lobes that is essential for the consolidation of memories and spatial navigation. Synaptic plasticity is coordinated by complex interactions of thousands of molecules and proteins. Among those proteins, synaptopodin (SP) is localized at a strategic position within excitatory synapses and has been shown to be fundamentally involved in the regulation of synaptic plasticity. To induce neuroinflammation and to study its effects on SP as well as synaptic plasticity, the classic model of lipopolysaccharide (LPS) was applied. This thesis discloses that inflammatory processes impair the ability of neurons to express hippocampal synaptic plasticity in vivo, which is accompanied by a downregulation of SP-mRNA and protein level in the mouse hippocampus, indicating that SP is one of the cellular targets through which inflammatory signaling pathways affect synaptic plasticity and hence neural function. To learn more about the cellular and molecular mechanisms, an in vitro LPS model was established using entorhino-hippocampal organotypic slice cultures (OTCs). While confirming the major effect of LPS on SP, this thesis furthermore shows that neuroinflammation crucially involves the cytokine TNFα to transduce its effects on SP, and that microglial cells are the main source of TNFα production under inflammatory conditions. In an attempt to learn more about the mechanisms that are affected under conditions of neuroinflammation effects of retinoic acid (RA), a vitamin A derivate were tested. This is mainly because SP as well as RA have been shown to modulate synaptic plasticity through the accumulation of glutamate receptors at the postsynaptic site: SP via the association with the actincytoskeleton as well as intracellular calcium stores, and RA directly via the modulation of local protein synthesis within dendrites. Indeed, in slice cultures exposed to RA, hippocampal SP cluster size is upregulated, both in vitro and in vivo. Intriguingly, a lack of SP prevents RA-induced synaptic strengthening of hippocampal dentate granule cells in OTCs. This suggests a direct contribution of SP in RA-dependent synaptic plasticity. Interestingly, co-immunoprecipitation of SP-mRNA together with the RA-receptor alpha (RARα) further implies that RA directly controls synaptic plasticity via regulation of SP-protein expression. It is therefore interesting to speculate that RA may increase SP expression or prevent its reduction and thus alterations in synaptic plasticity under conditions of neuroinflammation. Taken together, this thesis identifies SP as an important neuronal target of TNFα-mediated alterations in synaptic plasticity. Moreover, the work on RA indicates that SP affects the ability of neurons to express synaptic plasticity by modulating/mediating local protein synthesis. Since neuroinflammatory processes are an elementary concomitant feature and/or cause of neurological diseases, I am confident that future work on the effects of inflammatory processes on brain function may provide the perspective in devising new therapeutic strategies for the treatment of neuropathologies such as Alzheimer’s disease, multiple sclerosis, epilepsy or stroke, by targeting SP expression and SP-mediated synaptic plasticity

    Toward Predicting the Outcome of an A/B Experiment for Search Relevance

    No full text
    A standard approach to estimating online click-based met-rics of a ranking function is to run it in a controlled exper-iment on live users. While reliable and popular in practice, configuring and running an online experiment is cumber-some and time-intensive. In this work, inspired by recent successes of offline evaluation techniques for recommender systems, we study an alternative that uses historical search log to reliably predict online click-based metrics of a new ranking function, without actually running it on live users. To tackle novel challenges encountered in Web search, variations of the basic techniques are proposed. The first is to take advantage of diversified behavior of a search en-gine over a long period of time to simulate randomized data collection, so that our approach can be used at very low cost. The second is to replace exact matching (of recommended items in previous work) by fuzzy matching (of search re-sult pages) to increase data efficiency, via a better trade-off of bias and variance. Extensive experimental results based on large-scale real search data from a major commercial search engine in the US market demonstrate our approach is promising and has potential for wide use in Web search

    Neurofeedback as a nonpharmacological treatment for adults with attention-deficit/hyperactivity disorder (ADHD): study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Neurofeedback has been applied effectively in various areas, especially in the treatment of children with attention-deficit/hyperactivity disorder (ADHD). This study protocol is designed to investigate the effect of slow cortical potential (SCP) feedback and a new form of neurofeedback using near-infrared spectroscopy (NIRS) on symptomatology and neurophysiological parameters in an adult ADHD population. A comparison of SCP and NIRS feedback therapy methods has not been previously conducted and may yield valuable findings about alternative treatments for adult ADHD. METHODS/DESIGN: The outcome of both neurofeedback techniques will be assessed over 30 treatment sessions and after a 6-month follow-up period, and then will be compared to a nonspecific biofeedback treatment. Furthermore, to investigate if treatment effects in this proof-of-principle study can be predicted by specific neurophysiological baseline parameters, regression models will be applied. Finally, a comparison with healthy controls will be conducted to evaluate deviant pretraining neurophysiological parameters, stability of assessment measures, and treatment outcome. DISCUSSION: To date, an investigation and comparison of SCP and NIRS feedback training to an active control has not been conducted; therefore, we hope to gain valuable insights in effects and differences of these types of treatment for ADHD in adults. TRIAL REGISTRATION: This study is registered with the German Registry of Clinical Trials: DRKS00006767, date of registration: 8 October 2014

    Near-infrared spectroscopy based neurofeedback of prefrontal cortex activity: a proof-of-concept study

    No full text
    Neurofeedback is a promising tool for treatment and rehabilitation of several patient groups. In this proof of principle study, near-infrared spectroscopy (NIRS) based neurofeedback of frontal cortical areas was investigated in healthy adults. Main aims were the assessment of learning, the effects on performance in a working memory (n-back) task and the impact of applied strategies on regulation.13 healthy participants underwent 8 sessions of NIRS based neurofeedback within two weeks to learn to voluntarily up-regulate hemodynamic activity in prefrontal areas. An n-back task in pre-/post measurements was used to monitor neurocognitive changes. Mean oxygenated hemoglobin (O2Hb) amplitudes over the course of the sessions as well as during the n-back task were evaluated. 12 out of 13 participants were able to regulate their frontal hemodynamic response via NIRS neurofeedback. However, no systematic learning effects were observed in frontal O2Hb amplitudes over the training course in our healthy sample. We found an impact of applied strategies in only 5 out of 13 subjects. Regarding the n-back task, neurofeedback appeared to induce more focused and specific brain activation compared to pre-training measurement. NIRS based neurofeedback is a feasible and potentially effective method, with an impact on activation patterns in a working memory task. Ceiling effects might explain the lack of a systematic learning pattern in healthy subjects. Clinical studies are needed to show effects in patients exhibiting pathological deviations in prefrontal function
    corecore