22 research outputs found

    Funktionalisierung und Immobilisierung von MgO NanowĂŒrfeln

    No full text
    The knowledge-based synthesis of nanoparticles of defined composition, structure, and morphology and rationalization of the resulting optical or chemical properties lies at the heart of next generation particle based applications in the fields of inorganic phosphors, sensors, and catalysts. This work aimed at the vapor phase synthesis and physico chemical characterization of alkaline earth oxide nanoparticles. The experimental focus was directed towards to 1) the quantitative and qualitative description of surface properties of pure and surface functionalized MgO nanocubes, 2) the investigation of the influence of particle particle interfaces on the electronic properties of MgO nanocubes, and 3) the immobilization of alkaline earth oxide nanoparticles in porous SiO2 host materials. 1) The optical surface properties of MgO nanocubes and those functionalized with BaO were described quantitatively. On MgO nanocube powder samples containing approximately 10(^15) MgO nanoparticles photoluminescence quantum yields of up to 20% were measured for the excitation of edge elements. The decoration of low coordinated surface sites with small amounts of BaO (0.03 at.%) significantly enhances the radiative deactivation probability and increases quantum yields up to 30%. Obtained quantitative figures, such as quantum yield and the absolute number of nanoparticles contributing to a photoluminescence emission process, are of major interest for envisioned applications of alkaline earth oxides as constituents in light emitting devices. MgO based particle systems were produced to combine the high thermal stability characteristic to MgO with the electronic properties of a second, thermally less stable component. Co combustion of magnesium vapor with zinc or barium vapor in oxygen atmosphere and subsequent annealing in high vacuum leads to novel composite materials with different particle morphologies. Annealing induced segregation of Zn2+ ions into the MgO surface results in ZnxMg1−xO nanocomposites of exceptional regular cubic morphology. The occupation of edge sites by chains of Zn2+–O2− units is tracked through their spectroscopic fingerprint. ZnxMg1−xO particles may be seen as insulation MgO nanocubes with semiconducting ZnO scaffold like structures. In the case of Ba2+ segregation extensive phase separation leads – for a part of the obtained nanoparticles – to the formation of hemispherically shaped BaO structures supported on MgO based nanoparticles. The adsorption of gaseous CS2 on MgO nanocube surfaces and subsequent surface reactions were studied, aiming at the site selective substitution of surface O2−- against S2− ions. Contrary to expectations, spectroscopic measurements showed that sulfur exists in a positive oxidation state due to the formation of (SO3)2−- and (SO4)2− groups in which sulfur cations are expected to be part of the MgO crystal lattice. 2) Important and so far neglected classes of structural elements that affect the overall electronic ensemble properties are solid solid interfaces between individual particles. Interaction induced changes in the electronic surface properties were investigated on a series of MgO nanocube powders, which – prior to the spectroscopic measurement – had been subjected to external pressures. Optical property changes as compared to uncompressed MgO nanocube powders were characterized with optical spectroscopy. In addition to strong optical absorptions in the range between 4.0 eV and 5.5 eV a photoluminescence emission feature, which is only present in compressed powders was observed at 2.5 eV and is attributed to dislocation defects formed at the interface between MgO nanocubes. The possibility to directly address such interfaces by tuning the energy of excitation is the key to understand exciton generation at interfaces. 3) A critical issue for the utilization of nanoparticle systems with desired properties in optical or electronic devices is their immobilization. Aiming at the connection of alkaline earth oxide nanoparticles to the macroscopic world their immobilization in porous SiO2 host materials was investigated. Photoluminescence and UV / Vis diffuse reflectance spectroscopy are employed to study the optical properties of SiO2 materials with different pore size distributions and pore arrangements. Powder X ray diffraction is used to characterize the influence of Mg and Ca infiltration on the structural properties of SiO2 host materials. Obtained results show that porous SiO2 has interesting photoluminescence and optical absorption properties, which are related to point defects in the SiO2 network. Upon infiltration of porous SiO2 with Mg and Ca followed by vacuum annealing, composite materials containing nanocrystalline alkaline earth metal oxides or silicate phases are obtained. The possibility to infiltrate SiO2 host materials with alkaline earth oxides opens up the opportunity to exploit the optical properties of alkaline earth oxides for optical applications.Die Synthese von Nanopartikeln mit enger Verteilung der Eigenschaften PartikelgrĂ¶ĂŸe, Partikelgestalt und Zusammensetzung sowie deren strukturelle und spektroskopische Charakterisierung sind zentraler Bestandteil fĂŒr die Entwicklung von aus Nanopartikeln aufgebauten Funktionswerkstoffen. In dieser Arbeit werden Erdalkalimetalloxid Nanopartikeln mittels chemischer Gasphasensynthese hergestellt und anschließend bezĂŒglich ihrer Struktur und spektroskopischen Eigenschaften charakterisiert. Die experimentellen Schwerpunkte liegen auf 1) der qualitativen und quantitativen Beschreibung der OberflĂ€cheneigenschaften von reinen und oberflĂ€chenfunktionalisierten MgO NanowĂŒrfeln, 2) der Untersuchung des Einflusses von Partikel Partikel GrenzflĂ€chen auf die OberflĂ€cheneigenschaften von MgO NanowĂŒrfeln und 3) der Immobilisierung von Erdalkalimetalloxid Nanopartikeln in porösen SiO2 Materialien. 1) An reinen und mit BaO funktionalisierten MgO NanowĂŒrfeln konnten quantitative GrĂ¶ĂŸen der optischen Eigenschaften (Zahl der optisch aktiven Zentren, durchstrahlte Pulvervolumina und Photolumineszenz Quantenausbeuten) bestimmt werden. FĂŒr ein MgO Nanopartikelpulver wurde eine Photolumineszenz Quantenausbeute von 5% fĂŒr die Anregung von Eck- und von 20% fĂŒr die Anregung von Kantenelementen bestimmt. Die Funktionalisierung von niedrig koordinierten OberflĂ€chenzentren mit Spuren von BaO (0,03 at.%) erhöht die Wahrscheinlichkeit fĂŒr strahlende Rekombination und fĂŒhrt somit zu einer Erhöhung der Quantenausbeute auf bis zu 30%. MgO basierende Systeme wurden hergestellt um die hohe thermische StabilitĂ€t von MgO mit den elektronischen Eigenschaften einer zweiten, thermisch weniger stabilen Komponente zu kombinieren. Die gemeinsame Verbrennung von Magnesiumdampf mit Zink- oder Bariumdampf im Sauerstoffstrom gefolgt von thermischer Nachbehandlung im Hochvakuum liefert Komposite mit unterschiedlicher Partikelmorphologie. Thermisch induzierte Segregation von Zn2+ Kationen in die MgO PartikeloberflĂ€che fĂŒhrt zu ZnxMg1−xO Nanokompositen mit außergewöhnlich ausgeprĂ€gter kubischer Morphologie. Im Falle von Ba2+ Segregation fĂŒhrt – fĂŒr einen Teil der Nanopartikeln – Phasenseparation zur Ausbildung von halbrunden BaO Segregaten auf MgO basierenden Nanopartikeln. Die Adsorption von gasförmigen CS2 auf MgO PartikeloberflĂ€chen und nachfolgende OberflĂ€chenreaktionen wurden untersucht. Spektroskopische Messungen zeigen, dass Schwefel mit positiver Oxidationszahl als (SO3)2− und (SO4)2− Gruppen vorliegt, wobei Schwefelkationen Bestandteil des MgO Kristallgitters sind. 2) Eine wichtige aber bisher wenig untersuchte Klasse von Strukturelementen in Partikelpulvern sind Feststoff Feststoff GrenzflĂ€chen zwischen einzelnen Nanopartikeln. Der Einfluss von solchen Strukturelementen auf die elektronischen OberflĂ€cheneigenschaften von MgO Nanopartikeln wurde erstmals systematisch untersucht. Durch Anwendung unterschiedlicher Pressdrucke auf MgO Pulver, konnten Partikelensembles unterschiedlicher Dichte und somit unterschiedlicher Konzentration von Feststoff Feststoff GrenzflĂ€chen erzeugt werden. ZusĂ€tzlich zu neu auftretenden und intensiven Absorptionsbanden im Energiebereich zwischen 4.0 eV und 5.5 eV wurde eine Photolumineszenzbande mit einem Maximum bei 2.5 eV gefunden, die nur auf komprimierten Proben, d.h. auf Proben mit einer hohen Konzentration von Feststoff Feststoff GrenzflĂ€chen, auftritt. Durch UnterstĂŒtzung von theoretischen Rechnungen konnte die neu gefundene Photolumineszenzbande Versetzungsdefekten zugeordnet werden. 3) Um Nanopartikeln mit bestimmten Eigenschaften in optischen oder elektronischen Bauteilen einsetzen zu können, ist deren Immobilisierung von entscheidender Bedeutung. Erdalkalimetalloxid Nanopartikeln sollen unter Beibehaltung ihrer OberflĂ€cheneigenschaften in porösen SiO2 TrĂ€germaterialien deponiert werden. Photolumineszenz- und UV / Vis Spektroskopie werden eingesetzt, um die optischen Eigenschaften von SiO2 Materialien mit unterschiedlicher PorengrĂ¶ĂŸenverteilung und Porenanordnung zu untersuchen. Röntgendiffraktion wird verwendet, um die EinflĂŒsse von Mg- und Ca Infiltration bezĂŒglich des Kristallisationsverhaltens von SiO2 TrĂ€germaterialien zu untersuchen. Durch die erhaltenen Resultate kann gezeigt werden, dass poröses SiO2 interessante Photolumineszenz- und Absorptionseigenschaften aufweist, die auf Punktdefekte im SiO2 Netzwerk zurĂŒckzufĂŒhren sind. Durch die Infiltration von Mg- und Ca Dampf in SiO2 TrĂ€germaterialien und anschließende Vakuumbehandlung werden Kompositmaterialien erzeugt, die aus nanokristallinen Erdalkalimetalloxid- und Silikat Phasen aufgebaut sind. Zusammenfassend kann festgestellt werden, dass hochdisperse Erdalkalimetalloxide ĂŒber starke und durch verschiedene Parameter einstellbare Photolumineszenz Emissionen verfĂŒgen, die den sichtbaren Bereich des Lichts abdecken. Sie stellen damit eine vielversprechende und kostengĂŒnstige Alternative zu aktuell verwendeten Leuchtstoffmaterialien dar

    Thin water films and magnesium hydroxide fiber growth

    No full text
    Thin films of water covering highly dispersed metal oxides can give rise to the spontaneous and spatially controllable growth of hydroxide fibers in ambient air. Knowledge about the underlying formation mechanisms is key to the rational development of metal oxide nanomaterials and associated microstructures. We used SiCl4 as a water free chlorine ion source for the surface functionalization of MgO nanocubes and explored their subsequent transformation into magnesium oxychloride Mg3(OH)5Cl·4H2O fibers upon contact with water vapor. Specifically we show how the temperature of the functionalization process and material dispersion control the reaction pathway that can lead to very different products like Mg(OH)2, MgCl2·6H2O, or Mg3(OH)5Cl·4H2O and delineate a reaction mechanism. Lessons to be learned from this unique route to form hydroxide fibers under ambient conditions can be applied to a variety of microstructural evolution processes that involve metastable solids and superficial water acting both as a reactant and as a reaction medium for the hydration of metal oxide particles

    Photoluminescence quenching in compressed MgO nanoparticle systems

    No full text
    Efficient use of highly dispersed metal oxides for lighting, energy conversion and catalysis requires knowledge about the impact of density and microstructure of the powders on the optical nanoparticle properties. For MgO nanocube powders we present a combined photoluminescence (PL) and electron paramagnetic resonance (EPR) approach which enables for samples of different aggregation states the quantification of the fractional powder volume that becomes illuminated with UV and visible light during the PL measurements. Using O2 as a PL emission quencher and – after light induced exciton separation and oxygen adsorption – as an EPR active adsorbate we observed clear aggregation dependent trends in PL emission quenching that originate from particle–particle contacts. Upon interaction of low coordinated surface elements with the surfaces of adjacent MgO nanocubes, which occurs even at powder consolidation levels that escape sorption analysis, the radiative decay of excited surface states becomes quenched down to 15% of the original intensity. Our results underline the critical role of microstructure and the aggregation state of a nanoparticle ensemble with respect to spectroscopic properties and related adsorption induced changes

    Photoluminescent Nanoparticle Surfaces: The Potential of Alkaline Earth Oxides for Optical Applications

    No full text
    International audienceThe surfaces of alkaline earth oxides emit bright, colored light and have potential as thermally stable inorganic phosphors with adsorption-dependent optical properties. The doping of thermally stable MgO nanocubes with low-coordinated BaO surface elements (see figure) clearly demonstrates that chemical manipulation of the solid-gas interface provides an efficient means to adjust the optical properties of powders in controlled gas atmosphere

    Bulk and Surface Excitons in Alloyed and Phase-Separated ZnO-MgO Particulate System

    No full text
    The rational design of composite nanoparticles with desired optical and electronic properties requires the detailed analysis of surface and bulk contributions to the respective overall function. We use flame spray pyrolysis (FSP) to generate nanoparticles of the ternary Zn–Mg–O system the compositions of which range from solid solutions of Zn2+ ions in periclase MgO to phase separated particle mixtures which consist of periclase (cubic) MgO and wurtzite (hexagonal) ZnO phases. The structure and composition of the composite ZnxMg1–xO (0 ≀ x ≀ 0.3) particles are investigated using X-ray diffraction and high-resolution transmission electron microscopy, whereas UV diffuse reflectance and photoluminescence (PL) spectroscopy are used for the investigation of their optical properties. Vacuum annealing has been carried out to track the effects of stepwise elimination of surface adsorbates on the photoexcitation and PL emission properties. We demonstrate that for Zn0.1Mg0.9O particles, the admixed ZnO suppresses the MgO specific surface excitons and produces a PL emission band at 470 nm. Although gaseous oxygen partially reduces the emission intensity of hydroxylated particles, it leads to entire quenching in completely dehydroxylated samples after vacuum annealing at 1173 K. Consequently, surface hydroxyls at the solid–gas interface play a significant role as protecting groups against the PL-quenching effects of O2. The obtained results are relevant for the characterization of ZnO-based devices as well as for other metal oxide materials where the impact of the surface composition on the photoelectronic properties is usually neglected

    Nanoparticles as a support: CaO deposits on MgO cubes

    No full text
    International audienceMgO nanocubes with an average particle size of 8 nm were used to support thermally stable CaO deposits. Energy-filtered transmission electron microscopy (EFTEM) reveals their unprecedented high dispersion with sizes significantly below 4 nm. CaO-specific photoluminescence emission results from the photoexcitation of oxygen anions in edges and oxygen-terminated corners that, for the first time, are available at a sufficiently high concentration to be detected by ensemble averaging techniques. The presented approach can be easily extended to a variety of other thermally labile oxides that find important applications in optics, sensing, and catalysis and, on this base, can be incisively characterized

    O2 adsorption dependent photoluminescence emission from metal oxide nanoparticles

    No full text
    Optical properties of metal oxide nanoparticles are subject to synthesis related defects and impurities. Using photoluminescence spectroscopy and UV diffuse reflectance in conjunction with Auger electron spectroscopic surface analysis we investigated the effect of surface composition and oxygen adsorption on the photoluminescence properties of vapor phase grown ZnO and MgO nanoparticles. On hydroxylated MgO nanoparticles as a reference system, intense photoluminescence features exclusively originate from surface excitons, the radiative deactivation of which results in collisional quenching in an O2 atmosphere. Conversely, on as-prepared ZnO nanoparticles a broad yellow emission feature centered at hÎœEm = 2.1 eV exhibits an O2 induced intensity increase. Attributed to oxygen interstitials as recombination centers this enhancement effect originates from adsorbate-induced band bending, which is pertinent to the photoluminescence active region of the nanoparticles. Annealing induced trends in the optical properties of the two prototypical metal oxide nanoparticle systems, ZnO and MgO, are explained by changes in the surface composition and underline that particle surface and interface changes that result from handling and processing of nanoparticles critically affect luminescence
    corecore