21 research outputs found

    Neutrophil microvesicles drive atherosclerosis by delivering <i>miR-155</i> to atheroprone endothelium

    Get PDF
    Neutrophils are implicated in the pathogenesis of atherosclerosis but are seldom detected in atherosclerotic plaques. We investigated whether neutrophil-derived microvesicles may influence arterial pathophysiology. Here we report that levels of circulating neutrophil microvesicles are enhanced by exposure to a high fat diet, a known risk factor for atherosclerosis. Neutrophil microvesicles accumulate at disease-prone regions of arteries exposed to disturbed flow patterns, and promote vascular inflammation and atherosclerosis in a murine model. Using cultured endothelial cells exposed to disturbed flow, we demonstrate that neutrophil microvesicles promote inflammatory gene expression by delivering miR-155, enhancing NF-κB activation. Similarly, neutrophil microvesicles increase miR-155 and enhance NF-κB at disease-prone sites of disturbed flow in vivo. Enhancement of atherosclerotic plaque formation and increase in macrophage content by neutrophil microvesicles is dependent on miR-155. We conclude that neutrophils contribute to vascular inflammation and atherogenesis through delivery of microvesicles carrying miR-155 to disease-prone regions

    SukhdeepSingh_procedures and figures_ESM.doc from Donor–acceptor stenhouse adducts grafted polycarbonate surfaces: selectivity of the reaction for secondary amine on surface

    No full text
    Donor–acceptor stenhouse adducts (DASA) are gaining attention from organic and material chemists due to their visible light-stimulated photochromic properties. In this report, we are presenting a facile method for grafting coloured triene on polycarbonate surface, without involving any pre-treatments like plasma activation, etc. The chemoselectivity of carbonate with a primary amine and Meldrum's activated furan (MAF) with polymer bound secondary amine has been exploited to graft photoswitchable DASA on the polymer surface. Primary, secondary and tertiary amine-functionalized polycarbonate surfaces has been prepared to evaluate the reactivity of amine with MAF

    SukhdeepSingh_procedures and figures_ESM.doc from Donor–acceptor Stenhouse adduct-grafted polycarbonate surfaces: selectivity of the reaction for secondary amine on surface

    No full text
    Donor–acceptor Stenhouse adducts (DASAS) are gaining attention from organic and material chemists due to their visible light-stimulated photochromic properties. In this report, we present a facile method for grafting coloured triene on polycarbonate surface, without involving any pre-treatments like plasma activation, etc. The chemoselectivity of carbonate with a primary amine and Meldrum's activated furan (MAF) with polymer bound secondary amine has been exploited to graft photoswitchable DASA on the polymer surface. Primary, secondary and tertiary amine-functionalized polycarbonate surfaces have been prepared to evaluate the reactivity of amine with MAF

    Spatiotemporal Photopatterning on Polycarbonate Surface through Visible Light Responsive Polymer Bound DASA Compounds

    No full text
    Besides interesting applications in drug delivery, photoresponsive molecules have great potential to serve as an efficient basis for postfunctionalization photopatterning of polymer surfaces. To the best of our knowledge, only UV light sources have been exploited as a photoinducer for creating patterned templates with or without hydrogels. In this work, we present a practically facile method for grafting visible light responsive donor–acceptor stenhouse adducts (DASAs) on amino-functionalized polycarbonate surfaces. DASA grafted surfaces have shown excellent lithographic performance using visible light. The functionalized surfaces exhibit significant changes of their physical properties after being illuminated with visible light. By using suitable masks, well-defined patterns can be replicated with high precision and resolution. Since the DASA ligand synthesis and surface functionalization is not cumbersome, this method may serve as a facile protocol for obtaining photopatterned polymer surfaces for various applications

    Extended π‑Conjugated System for Fast-Charge and -Discharge Sodium-Ion Batteries

    No full text
    Organic sodium-ion batteries (SIBs) are potential alternatives of current commercial inorganic lithium-ion batteries for portable electronics (especially wearable electronics) because of their low cost and flexibility, making them possible to meet the future flexible and large-scale requirements. However, only a few organic SIBs have been reported so far, and most of them either were tested in a very slow rate or suffered significant performance degradation when cycled under high rate. Here, we are focusing on the molecular design for improving the battery performance and addressing the current challenge of fast-charge and -discharge. Through reasonable molecular design strategy, we demonstrate that the extension of the π-conjugated system is an efficient way to improve the high rate performance, leading to much enhanced capacity and cyclability with full recovery even after cycled under current density as high as 10 A g<sup>–1</sup>

    Microdialysis Assessment of Cerebral Perfusion during Cardiac Arrest, Extracorporeal Life Support and Cardiopulmonary Resuscitation in Rats – A Pilot Trial

    No full text
    <div><p>Cerebral metabolic alterations during cardiac arrest, cardiopulmonary resuscitation (CPR) and extracorporeal cardiopulmonary life support (ECLS) are poorly explored. Markers are needed for a more personalized resuscitation and post—resuscitation care. Aim of this study was to investigate early metabolic changes in the hippocampal CA1 region during ventricular fibrillation cardiac arrest (VF-CA) and ECLS versus conventional CPR. Male Sprague-Dawley rats (350g) underwent 8min untreated VF-CA followed by ECLS (n = 8; bloodflow 100ml/kg), mechanical CPR (n = 18; 200/min) until return of spontaneous circulation (ROSC). Shams (n = 2) were included. Glucose, glutamate and lactate/pyruvate ratio were compared between treatment groups and animals with and without ROSC. Ten animals (39%) achieved ROSC (ECLS 5/8 vs. CPR 5/18; OR 4,3;CI:0.7–25;p = 0.189). During VF-CA central nervous glucose decreased (0.32±0.1mmol/l to 0.04±0.01mmol/l; p<0.001) and showed a significant rise (0.53±0.1;p<0.001) after resuscitation. Lactate/pyruvate (L/P) ratio showed a 5fold increase (31 to 164; p<0.001; maximum 8min post ROSC). Glutamate showed a 3.5-fold increase to (2.06±1.5 to 7.12±5.1μmol/L; p<0.001) after CA. All parameters normalized after ROSC with no significant differences between ECLS and CPR. Metabolic changes during ischemia and resuscitation can be displayed by cerebral microdialysis in our VF-CA CPR and ECLS rat model. We found similar microdialysate concentrations and patterns of normalization in both resuscitation methods used.</p><p><b><i>Institutional Protocol Number</i>:</b> GZ0064.11/3b/2011</p></div

    Mean arterial blood pressure in mm Mercury against time.

    No full text
    <p>X-axis: time in minutes; Y-axis: mean arterial blood pressure invasively measured in mmHg (mean with standard deviation); VFCA, ventricular fibrillation cardiac arrest; ROSC, return of spontaneous circulation; ECLS, extracorporeal life support; CPR, cardiopulmonary resuscitation; The p value displayed results from comparison of mean values the interval of measurements min 70 to 74.</p

    Timeline of the experiment.

    No full text
    <p>Microdiyalsis sampling interval conituously with 1 sample over 8min; Time scale is non linear to allow better overview; VF, ventricular fibrillation; ROSC, return of spontaneous circulation; CPR, cardiopulmonary resuscitation; ECLS, extracorporeal cardiopulmonary life support.</p

    CA1 glutamate μmol/l against time.

    No full text
    <p>x-axis: Point of measurement, measurements 8min apart (sampling interval of 8min); y axis: Glutamate (μmol/l; mean values and standard deviation); CA, cardiac arrest; CPR, cardiopulmonary resuscitation; ECLS, extracorporeal cardiopulmonary life support; BL, baseline; ROSC, return of spontaneous circulation.</p

    CA1 glucose mmol/l against time.

    No full text
    <p>x-axis: Point of measurement, measurements 8min apart (sampling interval of 8min); y axis: Glucose (mmol/l; mean values and standard deviation); CA, cardiac arrest; CPR, cardiopulmonary resuscitation; ECLS, extracorporeal cardiopulmonary life support; BL, baseline; ROSC, return of spontaneous circulation.</p
    corecore