24 research outputs found

    Rate of acquired pulmonary vein stenosis after ablation of atrial fibrillation referred to electroanatomical mapping systems: Does it matter?

    Get PDF
    Background: Thermal injury during radiofrequency ablation (RFA) of atrial fibrillation (AF) can lead to pulmonary vein stenosis (PVS). It is currently unclear if routine screening for PVS by imaging (echocardiography, computed tomography) is clinically meaningful and if there is a correlation between PVS and the electroanatomical mapping system (EAMS) used for the ablation procedure. It was therefore investigated in the current single center experience. Methods: All patients from January 2004 to December 2016 with the diagnosis of PVS after interventional ablation of AF by radiofrequency were retrospectively analyzed. From 2004 to 2007, transesophageal echocardiography was routinely performed as screening for RFA-acquired PVS (group A). Since 2008, diagnostics were only initiated in cases of clinical symptoms suggestive for PVS (group B). Results: The overall PVS rate after interventional RFA for AF of the documented institution is 0.72% (70/9754). The incidence was not influenced by screening: group A had a 0.74% PVS rate and group B a 0.72% rate (NS). Referred to as the EAMS, there were significant differences: 20/4229 (0.5%) using CARTO®, 48/4510 (1.1%) using EnSite®, 1/853 (0.1%) using MediGuide®, and 1/162 (0.6%) using Rhythmia®. Since 2009, no significant difference between technologies was found. Conclusions: The present analysis of 9754 procedures revealed 70 cases of PVS. The incidence of PVSis not related to screening but to the application of different EAMS. Possible explanations are technological backgrounds (magnetic vs. electrical), learning curves, operator experience, and work-flow differences. Furthermore, incorporation of new technologies seems to be associated with higher incidences of PVS before workflows are optimized

    Optimal timing of contrast-enhanced three-dimensional magnetic resonance left atrial angiography before pulmonary vein ablation

    Get PDF
    Background: To achieve high image quality of cardiovascular magnetic resonance (CMR) pulmonary vein (PV) angiography prior catheter ablation in patients with atrial fibrillation, optimal timing of the angiographic sequence during contrast agent passage is important. The present study identified influential cardiovascular parameters for prediction of contrast agent travel time.Methods: One hundred six consecutive patients underwent a CMR examination including three-dimensional (3D) contrast-enhanced PV angiography with real-time bolus tracking prior to catheter ablation. Correct scan timing was characterized by relative signal enhancement measurements in the pulmonary artery, left atrium (LA), and ascending aorta. Furthermore, left- and right-ventricular function, left- and right-atrial dimensions, presence of mitral or tricuspid insufficiencies, and main pulmonary artery diameter were determined.Results: The highest relative signal enhancement in LA demonstrated optimal scan timing. Contrast agent travel time showed wide variability (range: 12–42 s; mean: 18 ± 4 s). On univariate analysis, most cardiovascular parameters correlated with contrast agent travel time while on multivariate analysis left- and right-ventricular function remained the only independent predictors, but overall a poor fit to the data (adjusted R2, 27.5%) was found.Conclusions: Contrast agent travel time was mainly influenced by left- and right-ventricular function but prediction models poorly fitted the data. Thus, 3D PV angiography prior to PV ablation procedures necessitates real-time assessment, with visual determination of individual contrast agent passage time to ensure consistently high CMR image quality

    Case Report: Four cases of cardiac sarcoidosis in patients with inherited cardiomyopathy—a phenotypic overlap, co-existence of two rare cardiomyopathies or a second-hit disease

    Get PDF
    Cardiac sarcoidosis (CS), a rare condition characterized by non-caseating granulomas, can manifest with symptoms such as atrioventricular block and ventricular tachycardia (VT), as well as mimic inherited cardiomyopathies. A 48-year-old male presented with recurrent VT. The initial 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET) scan showed uptake of the mediastinal lymph node. Cardiovascular magnetic resonance (CMR) demonstrated intramyocardial fibrosis. The follow-up 18FDG-PET scan revealed the presence of tracer uptake in the left ventricular (LV) septum, suggesting the likelihood of CS. Genetic testing identified a pathogenic LMNA variant. A 47-year-old female presented with complaints of palpitations and syncope. An Ajmaline provocation test confirmed Brugada syndrome (BrS). CMR revealed signs of cardiac inflammation. An endomyocardial biopsy (EMB) confirmed the diagnosis of cardiac sarcoidosis. Polymorphic VT was induced during an electrophysiological study, and an implantable cardioverter-defibrillator (ICD) was implanted. A 58-year-old woman presented with sustained VT with a prior diagnosis of hypertrophic cardiomyopathy (HCM). A genetic work-up identified the presence of a heterozygous MYBC3 variant of unknown significance (VUS). CMR revealed late gadolinium enhancement (LGE), while the 18FDG-PET scan demonstrated LV tracer uptake. The immunosuppressive therapy was adjusted, and no further VTs were observed. A 28-year-old male athlete with right ventricular dilatation and syncope experienced a cardiac arrest during training. Genetic testing identified a pathogenic mutation in PKP2. The autopsy has confirmed the presence of ACM and a distinctive extracardiac sarcoidosis. Cardiac sarcoidosis and inherited cardiomyopathies may interact in several different ways, altering the clinical presentation. Overlapping pathologies are frequently overlooked. Delayed or incomplete diagnosis risks inadequate treatment. Thus, genetic testing and endomyocardial biopsies should be recommended to obtain a clear diagnosis

    Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress

    Get PDF
    Contains fulltext : 96698.pdf (publisher's version ) (Open Access)BACKGROUND: Dobutamine stress cardiovascular magnetic resonance (DS-CMR) is an established tool to assess hibernating myocardium and ischemia. Analysis is typically based on visual assessment with considerable operator dependency. CMR myocardial feature tracking (CMR-FT) is a recently introduced technique for tissue voxel motion tracking on standard steady-state free precession (SSFP) images to derive circumferential and radial myocardial mechanics.We sought to determine the feasibility and reproducibility of CMR-FT for quantitative wall motion assessment during intermediate dose DS-CMR. METHODS: 10 healthy subjects were studied at 1.5 Tesla. Myocardial strain parameters were derived from SSFP cine images using dedicated CMR-FT software (Diogenes MRI prototype; Tomtec; Germany). Right ventricular (RV) and left ventricular (LV) longitudinal strain (EllRV and EllLV) and LV long-axis radial strain (ErrLAX) were derived from a 4-chamber view at rest. LV short-axis circumferential strain (EccSAX) and ErrSAX; LV ejection fraction (EF) and volumes were analyzed at rest and during dobutamine stress (10 and 20 mug . kg(1). min(1)). RESULTS: In all volunteers strain parameters could be derived from the SSFP images at rest and stress. EccSAX values showed significantly increased contraction with DSMR (rest: -24.1 +/- 6.7; 10 mug: -32.7 +/- 11.4; 20 mug: -39.2 +/- 15.2; p < 0.05). ErrSAX increased significantly with dobutamine (rest: 19.6 +/- 14.6; 10 mug: 31.8 +/- 20.9; 20 mug: 42.4 +/- 25.5; p < 0.05). In parallel with these changes; EF increased significantly with dobutamine (rest: 56.9 +/- 4.4%; 10 mug: 70.7 +/- 8.1; 20 mug: 76.8 +/- 4.6; p < 0.05). Observer variability was best for LV circumferential strain (EccSAX ) and worst for RV longitudinal strain (EllRV) as determined by 95% confidence intervals of the difference. CONCLUSIONS: CMR-FT reliably detects quantitative wall motion and strain derived from SSFP cine imaging that corresponds to inotropic stimulation. The current implementation may need improvement to reduce observer-induced variance. Within a given CMR lab; this novel technique holds promise of easy and fast quantification of wall mechanics and strain

    Psychometric Properties of the German Version of the Young Positive Schema Questionnaire (YPSQ) in the General Population and Psychiatric Patients

    No full text
    Early adaptive schemas (EAS) are resilience-oriented counterparts to early maladaptive schemas (EMS), which are central in schema therapy. The Young Positive Schema Questionnaire (YPSQ) was developed as a measure of EAS but has been evaluated neither in relation to a clinical population nor in a German-speaking sample. Objectives of this study were therefore the psychometric validation of a German YPSQ in a community sample and the comparison of EAS to psychiatric patients. Participants were 1,418 individuals from a community sample and 182 psychiatric patients with a main diagnosis of major depressive disorder. A factor structure of 10 EAS, instead of the original 14, demonstrated satisfactory factorial validity and internal consistency in both samples. EAS exhibited divergent validity to EMS, childhood trauma, and psychopathology. Convergent validity was evident with resilience, self-efficacy, and satisfaction with life. Support for incremental validity beyond EMS was especially shown for resilience, self-efficacy, and satisfaction with life, and was also evident for several dimensions of psychopathology. Individuals in the community sample exhibited more pronounced EAS compared to psychiatric patients with the exception of empathic consideration. Especially for concepts associated with mental health, the YPSQ has the potential to be a highly valuable addition to current research and practice

    Prospective Mental Imagery in Depression: Impact on Reward Processing and Reward-Motivated Behaviour

    No full text
    [Background] Mental imagery has long been part of cognitive behavioural therapies. More recently, a resurgence of interest has emerged for prospective mental imagery, i.e. future-directed imagery-based thought, and its relation to reward processing, motivation and behaviour in the context of depression. [Method] We conducted a selective review on the role of prospective mental imagery and its impact on reward processing and reward-motivated behaviour in depression. [Results] Based on the current literature, we propose a conceptual mechanistic model of prospective mental imagery. Prospective mental imagery of engaging in positive activities can increase reward anticipation and reward motivation, which can transfer to increased engagement in reward-motivated behaviour and more experiences of reward, thereby decreasing depressive symptoms. We suggest directions for future research using multimodal assessments to measure the impact of prospective mental imagery from its basic functioning in the lab to real-world and clinical implementation. [Conclusion] Prospective mental imagery has the potential to improve treatment for depression where the aim is to increase reward-motivated behaviours. Future research should investigate how exactly and for whom prospective mental imagery works
    corecore