15 research outputs found

    Radiation pattern of two identical emitters driven by a Laguerre-Gaussian beam: An atom nanoantenna

    Get PDF
    We study the directional properties of a radiation field emitted by a geometrically small system composed of two identical two-level emitters located at short distances and driven by an optical vortex beam, a Laguerre-Gaussian beam which possesses a structured phase and amplitude. We find that the system may operate as a nanoantenna for controlled and tunable directional emission. Polar diagrams of the radiation intensity are presented showing that a constant phase or amplitude difference at the positions of the emitters plays an essential role in the directivity of the emission. We find that the radiation patterns may differ dramatically for different phase and amplitude differences at the positions of the emitters. As a result the system may operate as a two- or one-sided nanoantenna. In particular, a two-sided highly focused directional emission can be achieved when the emitters experience the same amplitude and a constant phase difference of the driving field. We find a general directional property of the emitted field that when the phase differences at the positions of the emitters equal an even multiple of \pi/4, the system behaves as a two-sided antenna. When the phase difference equals an odd multiple of \pi/4, the system behaves as an one-sided antenna. The case when the emitters experience the same phase but different amplitudes of the driving field is also considered and it is found that the effect of different amplitudes is to cause the system to behave as a uni-directional antenna radiating along the interatomic axis.Comment: published versio

    Quantum Hall Physics with Cold Atoms in Cylindrical Optical Lattices

    Full text link
    We propose and study various realizations of a Hofstadter-Hubbard model on a cylinder geometry with fermionic cold atoms in optical lattices. The cylindrical optical lattice is created by copropagating Laguerre-Gauss beams, i.e.~light beams carrying orbital angular momentum. By strong focusing of the light beams we create a real space optical lattice in the form of rings, which are offset in energy. A second set of Laguerre-Gauss beams then induces a Raman-hopping between these rings, imprinting phases corresponding to a synthetic magnetic field (artificial gauge field). In addition, by rotating the lattice potential, we achieve a slowly varying flux through the hole of the cylinder, which allows us to probe the Hall response of the system as a realization of Laughlin's thought experiment. We study how in the presence of interactions fractional quantum Hall physics could be observed in this setup.Comment: 10 pages, 9 figure

    Giant Self-Kerr Nonlinearity in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems Under Low-Intensity Light Irradiance

    No full text
    Hybrid nanocomposites can provide a promising platform for integrated optics. Optical nonlinearity can significantly widen the range of applications of such structures. In the present paper, a theoretical investigation is carried out by solving the density matrix equations derived for a metal nanoparticles-graphene nanodisks-quantum dots hybrid system interacting with weak probe and strong control fields, in the steady state. We derive analytical expressions for linear and third-order nonlinear susceptibilities of the probe field. A giant self-Kerr nonlinear index of refraction is obtained in the optical region with relatively low light intensity. The optical absorption spectrum of the system demonstrates electromagnetically induced transparency and amplification without population inversion in the linear optical response arising from the negative real part of the polarizabilities for the plasmonic components at the energy of the localized surface plasmon resonance of the graphene nanodisks induced by the probe field. We find that the self-Kerr nonlinear optical properties of the system can be controlled by the geometrical features of the system, the size of metal nanoparticles and the strength of the control field. The controllable self-Kerr nonlinearities of hybrid nanocomposites can be employed in many interesting applications of modern integrated optics devices allowing for high nonlinearity with relatively low light intensity

    A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser

    No full text
    Active nanoplasmonics have recently led to the emergence of many promising applications. One of them is the spaser (surface plasmons amplification by stimulated emission of radiation) that has been shown to generate coherent and intense fields of selected surface plasmon modes that are strongly localized in the nanoscale. We propose a novel nanospaser composed of a metal nanoparticles-graphene nanodisks hybrid plasmonic system as its resonator and a quantum dots cascade stack as its gain medium. We derive the plasmonic fields induced by pulsed excitation through the use of the effective medium theory. Based on the density matrix approach and by solving the Lindblad quantum master equation, we analyze the ultrafast dynamics of the spaser associated with coherent amplified plasmonic fields. The intensity of the plasmonic field is significantly affected by the width of the metallic contact and the time duration of the laser pulse used to launch the surface plasmons. The proposed nanospaser shows an extremely low spasing threshold and operates in the mid-infrared region that has received much attention due to its wide biomedical, chemical and telecommunication applications
    corecore