52 research outputs found

    From man to mice - from mice to man

    Get PDF

    Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>jumonji C (JmjC) domain containing gene 6 </it>(<it>Jmjd6</it>, previously known as phosphatidylserine receptor) has misleadingly been annotated to encode a transmembrane receptor for the engulfment of apoptotic cells. Given the importance of JmjC domain containing proteins in controlling a wide range of diverse biological functions, we undertook a comparative genomic analysis to gain further insights in <it>Jmjd6 </it>gene organisation, evolution, and protein function.</p> <p>Results</p> <p>We describe here a semiautomated computational pipeline to identify and annotate JmjC domain containing proteins. Using a sequence segment N-terminal of the Jmjd6 JmjC domain as query for a reciprocal BLAST search, we identified homologous sequences in 62 species across all major phyla. Retrieved <it>Jmjd6 </it>sequences were used to phylogenetically analyse corresponding loci and their genomic neighbourhood. This analysis let to the identification and characterisation of a bi-directional transcriptional unit compromising the <it>Jmjd6 </it>and <it>1110005A03Rik </it>genes and to the recognition of a new, before overseen <it>Jmjd6 </it>exon in mammals. Using expression studies, two novel <it>Jmjd6 </it>splice variants were identified and validated <it>in vivo</it>. Analysis of the <it>Jmjd6 </it>neighbouring gene <it>1110005A03Rik </it>revealed an incident deletion of this gene in two out of three earlier reported <it>Jmjd6 </it>knockout mice, which might affect previously described conflicting phenotypes. To determine potentially important residues for <it>Jmjd6 </it>function a structural model of the Jmjd6 protein was calculated based on sequence conservation. This approach identified a conserved double-stranded β<sup>-</sup>helix (DSBH) fold and a HxDx<sub>n</sub>H facial triad as structural motifs. Moreover, our systematic annotation in nine species identified 313 DSBH fold-containing proteins that split into 25 highly conserved subgroups.</p> <p>Conclusion</p> <p>We give further evidence that <it>Jmjd6 </it>most likely has a function as a nonheme-Fe(II)-2-oxoglutarate-dependent dioxygenase as previously suggested. Further, we provide novel insights into the evolution of Jmjd6 and other related members of the superfamily of JmjC domain containing proteins. Finally, we discuss possibilities of the involvement of <it>Jmjd6 </it>and <it>1110005A03Rik </it>in an antagonistic biochemical pathway.</p

    Influence of Internalin A murinisation on host resistance to orally acquired listeriosis in mice

    Get PDF
    Background: The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of ‘murinisation’ to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation. Results: The murinised Listeria monocytogenes strain showed enhanced invasiveness and induced more severe infections in all four investigated mouse inbred strains compared to the non-murinised Listeria strain. We identified C57BL/6J mice as being most resistant to orally acquired listeriosis whereas C3HeB/FeJ, A/J and BALB/cJ mice were found to be most susceptible to infection. This was reflected in faster kinetics of Listeria dissemination, higher bacterial loads in internal organs, and elevated serum levels of IL-6, IFN-γ, TNF-α and CCL2 in the susceptible strains as compared to the resistant C57BL/6J strain. Importantly, murinisation of InlA did not cause enhanced invasion of Listeria monocytogenes into the brain. Conclusion: Murinised Listeria are able to efficiently cross the intestinal barrier in mice from diverse genetic backgrounds. However, expression of murinized InlA does not enhance listerial brain invasion suggesting that crossing of the blood brain barrier and crossing of the intestinal epithelium are achieved by Listeria monocytogenes through different molecular mechanisms

    Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique

    Get PDF
    BACKGROUND: Congenital heart defects are the leading non-infectious cause of death in children. Genetic studies in the mouse have been crucial to uncover new genes and signaling pathways associated with heart development and congenital heart disease. The identification of murine models of congenital cardiac malformations in high-throughput mutagenesis screens and in gene-targeted models is hindered by the opacity of the mouse embryo. RESULTS: We developed and optimized a novel method for high-throughput multi-embryo magnetic resonance imaging (MRI). Using this approach we identified cardiac malformations in phosphatidylserine receptor (Ptdsr) deficient embryos. These included ventricular septal defects, double-outlet right ventricle, and hypoplasia of the pulmonary artery and thymus. These results indicate that Ptdsr plays a key role in cardiac development. CONCLUSIONS: Our novel multi-embryo MRI technique enables high-throughput identification of murine models for human congenital cardiopulmonary malformations at high spatial resolution. The technique can be easily adapted for mouse mutagenesis screens and, thus provides an important new tool for identifying new mouse models for human congenital heart diseases

    Analysis of Jmjd6 Cellular Localization and Testing for Its Involvement in Histone Demethylation

    Get PDF
    BACKGROUND: Methylation of residues in histone tails is part of a network that regulates gene expression. JmjC domain containing proteins catalyze the oxidative removal of methyl groups on histone lysine residues. Here, we report studies to test the involvement of Jumonji domain-containing protein 6 (Jmjd6) in histone lysine demethylation. Jmjd6 has recently been shown to hydroxylate RNA splicing factors and is known to be essential for the differentiation of multiple tissues and cells during embryogenesis. However, there have been conflicting reports as to whether Jmjd6 is a histone-modifying enzyme. METHODOLOGY/PRINCIPAL FINDINGS: Immunolocalization studies reveal that Jmjd6 is distributed throughout the nucleoplasm outside of regions containing heterochromatic DNA, with occasional localization in nucleoli. During mitosis, Jmjd6 is excluded from the nucleus and reappears in the telophase of the cell cycle. Western blot analyses confirmed that Jmjd6 forms homo-multimers of different molecular weights in the nucleus and cytoplasm. A comparison of mono-, di-, and tri-methylation states of H3K4, H3K9, H3K27, H3K36, and H4K20 histone residues in wildtype and Jmjd6-knockout cells indicate that Jmjd6 is not involved in the demethylation of these histone lysine residues. This is further supported by overexpression of enzymatically active and inactive forms of Jmjd6 and subsequent analysis of histone methylation patterns by immunocytochemistry and western blot analysis. Finally, treatment of cells with RNase A and DNase I indicate that Jmjd6 may preferentially associate with RNA/RNA complexes and less likely with chromatin. CONCLUSIONS/SIGNIFICANCE: Taken together, our results provide further evidence that Jmjd6 is unlikely to be involved in histone lysine demethylation. We confirmed that Jmjd6 forms multimers and showed that nuclear localization of the protein involves association with a nucleic acid matrix

    The Transcriptional Network that Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1

    Get PDF
    The response of the human acute myeloid leukemia cell line THP-1 to phorbol esters has been widely studied to test candidate leukemia therapies and as a model of cell cycle arrest and monocyte-macrophage differentiation. Here we have employed Cap Analysis of Gene Expression (CAGE) to analyze a dense time course of transcriptional regulation in THP-1 cells treated with phorbol myristate acetate (PMA) over 96 h. PMA treatment greatly reduced the numbers of cells entering S phase and also blocked cells exiting G2/M. The PMA-treated cells became adherent and expression of mature macrophage-specific genes increased progressively over the duration of the time course. Within 1–2 h PMA induced known targets of tumor protein p53 (TP53), notably CDKN1A, followed by gradual down-regulation of cell-cycle associated genes. Also within the first 2 h, PMA induced immediate early genes including transcription factor genes encoding proteins implicated in macrophage differentiation (EGR2, JUN, MAFB) and down-regulated genes for transcription factors involved in immature myeloid cell proliferation (MYB, IRF8, GFI1). The dense time course revealed that the response to PMA was not linear and progressive. Rather, network-based clustering of the time course data highlighted a sequential cascade of transient up- and down-regulated expression of genes encoding feedback regulators, as well as transcription factors associated with macrophage differentiation and their inferred target genes. CAGE also identified known and candidate novel enhancers expressed in THP-1 cells and many novel inducible genes that currently lack functional annotation and/or had no previously known function in macrophages. The time course is available on the ZENBU platform allowing comparison to FANTOM4 and FANTOM5 data
    • …
    corecore