43 research outputs found

    Hypervelocity stars in the Gaia era: Runaway B stars beyond the velocity limit of classical ejection mechanisms

    Full text link
    Young massive stars in the halo are assumed to be runaway stars from the Galactic disk. Possible ejection scenarios are binary supernova ejections (BSE) or dynamical ejections from star clusters (DE). Hypervelocity stars (HVSs) are extreme runaway stars that are potentially unbound from the Galaxy. Powerful acceleration mechanisms such as the tidal disruption of a binary system by a supermassive black hole (SMBH) are required to produce them. Therefore, HVSs are believed to originate in the Galactic center (GC), the only place known to host an SMBH. The second Gaia data release (DR2) offers the opportunity of studying HVSs in an unprecedented manner. We revisit some of the most interesting high-velocity stars, that is, 15 stars for which proper motions with the Hubble Space Telescope were obtained in the pre-Gaia era, to unravel their origin. By carrying out kinematic analyses based on revised spectrophotometric distances and proper motions from Gaia DR2, kinematic properties were obtained that help constrain the spatial origins of these stars. Stars that were previously considered (un)bound remain (un)bound in Galactic potentials favored by Gaia DR2 astrometry. For nine stars (five candidate HVSs plus all four radial velocity outliers), the GC can be ruled out as spatial origin at least at 2σ2\sigma confidence level, suggesting that a large portion of the known HVSs are disk runaway stars launched close to or beyond Galactic escape velocities. The fastest star in the sample, HVS3, is confirmed to originate in the Large Magellanic Cloud. Because the ejection velocities of five of our non-GC stars are close to or above the upper limits predicted for BSE and DE, another powerful dynamical ejection mechanism (e.g., involving massive perturbers such as intermediate-mass black holes) is likely to operate in addition to the three classical scenarios mentioned above.Comment: Accepted for publication in A&A (Astronomy and Astrophysics

    New and revised parameters for several southern OB binaries

    Full text link
    Using ESO FEROS archive spectra of several southern OB-type binaries, we derived periods for three SB2 spectroscopic binaries, HD 97166, HD 115455, and HD 123590, and two SB1 systems, HD 130298 and HD 163892. It was also possible to use new FEROS spectra to improve the parameters of the known binaries, KX Vel and HD 167263. For KX Vel, we determined a dynamic mass of the primary of 16.8 M⊙_{\odot}, while the evolutionary model suggests a higher value of 20.2 M⊙_{\odot}. We derived an improved period for HD 167263, and in its spectra, we recognized contributions of both of its interferometric components.Comment: 9 pages, A&A accepte

    The origin of early-type runaway stars from open clusters

    Full text link
    Runaway stars are ejected from their place of birth in the Galactic disk, with some young B-type runaways found several tens of kiloparsecs from the plane traveling at speeds beyond the escape velocity. Young open clusters are a likely place of origin, and ejection may be either through N-body interactions or in binary supernova explosions. The excellent quality of Gaia astrometry opens up the path to study the kinematics of young runaway stars to such a high precision that the place of origin in open stellar clusters can be identified uniquely. We developed an efficient minimization method to calculate whether two or more objects may come from the same place, which we tested against samples of Orion runaways. Our fitting procedure was then used to calculate trajectories for known runaway stars where we used Gaia data and updated radial velocities. We found that only half of the sample could be classified as runaways while the others were walkaway stars. Most of the latter stars turned out to be binaries. We identified parent clusters for runaways based on their trajectories and then used cluster age and flight time of the stars to investigate whether the ejection was likely due to a binary supernova or due to a dynamical ejection. In particular, we show that the classical runaways AE Aurigae and Ό\mu Columbae might not have originated together, with Ό\mu Columbae having an earlier ejection from Collinder 69, a cluster near the ONC. The second sample investigated comprises a set of distant runaway B stars in the halo which have been studied carefully by quantitative spectral analyses. We are able to identify candidate parent clusters for at least four stars including the hyper-runaway candidate HIP 60350. The ejection events had to be very violent, ejecting stars at velocities as large as 150 to 400 km/s

    A new method for an objective, χ2\chi^2-based spectroscopic analysis of early-type stars

    Full text link
    A precise quantitative spectral analysis - encompassing atmospheric parameter and chemical elemental abundance determination - is time consuming due to its iterative nature and the multi-parameter space to be explored, especially when done "by eye". A robust automated fitting technique that is as trustworthy as traditional methods would allow for large samples of stars to be analyzed in a consistent manner in reasonable time. We present a semi-automated quantitative spectral analysis technique for early-type stars based on the concept of χ2\chi^2 minimization. The method's main features are: far less subjective than typical "by eye" methods, correction for inaccurate continuum normalization, consideration of the whole useful spectral range, simultaneous sampling of the entire multi-parameter space (effective temperature, surface gravity, microturbulence, macroturbulence, projected rotational velocity, radial velocity, elemental abundances) to find the global best solution, applicable also to composite spectra. The method is fast, robust and reliable as seen from formal tests and from a comparison with previous analyses. Consistent quantitative spectral analyses of large samples of early-type stars can be performed quickly with very high accuracy.Comment: 32 pages, 4 figures, Astronomy and Astrophysics, accepte

    Blue extreme disk-runaway stars with Gaia EDR3

    Get PDF
    Since the discovery of hypervelocity stars in 2005, it has been widely believed that only the disruption of a binary system by a supermassive black hole at the Galactic center (GC), that is, the so-called Hills mechanism, is capable of accelerating stars to beyond the Galactic escape velocity. In the meantime, however, driven by the Gaia space mission, there is mounting evidence that many of the most extreme high-velocity early-type stars at high Galactic latitudes do originate in the Galactic disk and not in the GC. Moreover, the ejection velocities of these extreme disk-runaway stars exceed the predicted limits of the classical scenarios for the production of runaway stars. Based on proper motions from the Gaia early data release 3 and on recent and new spectrophotometric distances, we studied the kinematics of 30 such extreme disk-runaway stars, allowing us to deduce their spatial origins in and their ejection velocities from the Galactic disk with unprecedented precision. Only three stars in the sample have past trajectories that are consistent with an origin in the GC, most notably S5-HVS1, which is the most extreme object in the sample by far. All other program stars are shown to be disk runaways with ejection velocities that sharply contrast at least with classical ejection scenarios. They include HVS5 and HVS6, which are both gravitationally unbound to the Milky Way. While most stars originate from within a galactocentric radius of 15kpc, which corresponds to the observed extent of the spiral arms, a group of five stars stems from radii of about 21-29kpc. This indicates a possible link to outer Galactic rings and a potential origin from infalling satellite galaxies.Comment: Accepted for publication in A&A (Astronomy and Astrophysics

    A quantitative spectral analysis of 14 hypervelocity stars from the MMT survey

    Full text link
    Hypervelocity stars (HVSs) travel so fast that they may leave the Galaxy. The tidal disruption of a binary system by the supermassive black hole in the Galactic center is widely assumed to be their ejection mechanism. To test the hypothesis of an origin in the Galactic center using kinematic investigations, the current space velocities of the HVSs need to be determined. With the advent of Gaia's second data release, accurate radial velocities from spectroscopy are complemented by proper motion measurements of unprecedented quality. Based on a new spectroscopic analysis method, we provide revised distances and stellar ages, both of which are crucial to unravel the nature of the HVSs. We reanalyzed low-resolution optical spectra of 14 HVSs from the MMT HVS survey using a new grid of synthetic spectra, which account for deviations from local thermodynamic equilibrium, to derive effective temperatures, surface gravities, radial velocities, and projected rotational velocities. Stellar masses, radii, and ages were then determined by comparison with stellar evolutionary models that account for rotation. Finally, these results were combined with photometric measurements to obtain spectroscopic distances. The resulting atmospheric parameters are consistent with those of main sequence stars with masses in the range 2.5 - 5.0 M⊙M_\odot. The majority of the stars rotate at fast speeds, providing further evidence for their main sequence nature. Stellar ages range from 90 to 400 Myr and distances (with typical 1σ1\sigma-uncertainties of about 10-15%) from 30 to 100 kpc. Except for one object (B711), which we reclassify as A-type star, all stars are of spectral type B. The spectroscopic distances and stellar ages derived here are key ingredients for upcoming kinematic studies of HVSs based on Gaia proper motions.Comment: Accepted for publication in A&A (Astronomy and Astrophysics

    Runaway blue main-sequence stars at high Galactic latitudes. Target selection with Gaia and spectroscopic identification

    Get PDF
    Motivated by the historical identification of runaway main-sequence (MS) stars of early spectral type at high Galactic latitudes, we test the capability of Gaia at identifying new such stars. We have selected ~2300 sources with Gaia magnitudes of GBP - GRP < 0.05, compatible with the colors of low-extinction MS stars earlier than mid-A spectral type, and obtained low-resolution optical spectroscopy for 48 such stars. By performing detailed photometric and spectroscopic analyses, we derive their atmospheric and physical parameters (effective temperature, surface gravity, radial velocity, interstellar reddening, spectrophotometric distance, mass, radius, luminosity, and age). The comparison between spectrophotometric and parallax-based distances enables us to disentangle the MS candidates from older blue horizontal branch (BHB) candidates. We identify 12 runaway MS candidates, with masses between 2 and 6 Msun. Their trajectories are traced back to the Galactic disc to identify their most recent Galactic plane crossings and the corresponding flight times. All 12 candidates are ejected from the Galactic disc within 2 to 16.5 kpc from the Galactic center and possess flight times that are shorter than their evolutionary ages, compatible with a runaway hypothesis. Three MS candidates have ejection velocities exceeding 450 km/s, thus, appear to challenge the canonical ejection scenarios for late B-type stars. The fastest star of our sample also has a non-negligible Galactic escape probability if its MS nature can be confirmed. We identify 27 BHB candidates, and the two hottest stars in our sample are rare late O and early B type stars of low mass evolving towards the white dwarf cooling sequence.Comment: Accepted for publication in A&A; abbreviated abstract; 16 pages, 13 figures, 5 table

    An extremely fast halo hot subdwarf star in a wide binary system

    Get PDF
    New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 (V = 17.92 mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: T_(eff) = 30 600 ± 500 K, log g = 5.57 ± 0.06 cm s^(−2), and He abundance log (nHe/nH) = - 3.0 ± 0.2. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of [Fe/H] = - 1.3. The non-detection of radial velocity variations suggest the orbital period to be a few hundred days, in agreement with similar binaries observed in the disk. Using the SDSS-III flux calibrated spectrum we measured the distance to the system d = 5.5 ± 0.5 kpc, which is consistent with ultraviolet, optical, and infrared photometric constraints derived from binary spectral energy distributions. Our kinematic study shows that the Galactic rest-frame velocity of the system is so high that an unbound orbit cannot be ruled out. On the other hand, a bound orbit requires a massive dark matter halo. We conclude that the binary either formed in the halo or was accreted from the tidal debris of a dwarf galaxy by the Milky Way
    corecore