149 research outputs found

    Organic farming practices and climate change adaptation

    Get PDF
    The need to adapt to climate change is one of the main challenges facing the future of agriculture. Even if strong and effective mitigation measures were taken, even if greenhouse gas emissions dropped to zero immediately, the climate would continue to change for decades. This is why adaptation is necessary. If global warming can be kept to a moderate level, our need to adapt might primarily reflect gradual changes; but if temperatures rise sharply, adaptation measures will necessarily involve some fundamental transformations in agricultural production. Moreover, as the effects of climate change can vary greatly at local and regional levels, even moderate global warming can trigger fundamental changes in some places

    Klimafreundlicher Bioweinbau auf der Domaine de Beudon

    Get PDF
    Die Landwirtschaft soll Treibhausgasemissionen reduzieren und klimafreundlicher werden. So die Zielsetzung laut Klimastrategie des Bundesamtes fĂĽr Landwirtschaft. Dass diese Strategie auch ohne gesetzliche Verpflichtungen umgesetzt werden kann, zeigen Marion und Jacques Granges auf der Domaine de Beudon in Fully VS. Das FiBL hat im Auftrag von Bio Suisse fĂĽr den Bioweinbetrieb eine Klimabilanz gerechnet

    Changing Agriculture in a Changing Climate

    Get PDF
    Changes in weather patterns are going to affect agriculture with impacts differing according to region. The developing countries can reckon with the first effects. The authors look at the role that organic agriculture can play in adaptation. They assess the potential that organic agriculture could have but also look at the contribution that agriculture itself is making to climate change and examine how organic agriculture fares in this respect

    Mitigating Greenhouse Gases in Agriculture

    Get PDF
    Climate change has severe adverse effects on the livelihood of millions of the world’s poorest people. Increasing temperatures, water scarcity and droughts, flooding and storms affect food security. Thus, mitigation actions are needed to pave the way for a sustainable future for all. Currently, agriculture directly contributes about 10-15 percent to global greenhouse gas (GHG) emissions. Adding emissions from deforestation and land use change for animal feed production, this rises to about 30 percent. Scenarios predict a significant rise in agricultural emissions without effective mitigation actions. Given all the efforts undertaken in other sectors, agriculture would then become the single largest emitter within some decades, and without mitigation in agriculture, ambitious goals, such as keeping global warming below two degrees may become impossible to reach. The main agricultural emission sources are nitrous oxide from soils and methane from enteric fermentation in ruminants. In addition, conversion of native vegetation and grasslands to arable agriculture releases large amounts of CO2 from the vegetation and from soil organic matter. The main mitigation potential lies in soil carbon sequestration and preserving the existing soil carbon in arable soils. Nitrous oxide emissions can be reduced by reduced nitrogen application, but much still remains unclear about the effect different fertilizer types and management practices have on these emissions. Methane emissions from ruminants can only be reduced significantly by a reduction in animal numbers. Sequestration, finally, can be enhanced by conservative management practices, crop rotation with legumes (grass-clover) leys and application of organic fertilizers. An additional issue of importance are storage losses of food in developing and food wastage in developed countries (each about 30-40 percent of end products). Thus, there are basically five broad categories of mitigation actions in agriculture and its broader context: zz reducing direct and indirect emissions from agriculture; zz increasing carbon sequestration in agricultural soils; zz changing human dietary patterns towards more climate friendly food consumption, in particular less animal products; zz reducing storage losses and food wastage; zz the option of bioenergy needs to be mentioned, but depending on the type of bioenergy several negative side-effects may occur, including effects on food security, biodiversity and net GHG emissions. Although there are many difficulties in the details of mitigation actions in agriculture, a paradigm of climate friendly agriculture based on five principles can be derived from the knowledge about agricultural emissions and carbon sequestration: zz Climate friendly agriculture has to account for tradeoffs and choose system boundaries adequately; zz it has to account for synergies and adopt a systemic approach; zz aspects besides mitigation such as adaptation and food security are of crucial importance; zz it has to account for uncertainties and knowledge gaps, and zz the context beyond the agricultural sector has to be taken into account, in particular food consumption and waste patterns. Regarding policies to implement such a climate friendly agriculture, not much is yet around. In climate policy, agriculture only plays a minor role and negotiations proceed only very slowly on this topic. In agricultural policy climate change mitigation currently plays an insignificant role. In both contexts, some changes towards combined approaches can be expected over the next decade. Its 13 is essential that climate policy adequately captures the special characteristics of the agricultural sector. Policies with outcomes that endanger other aspects of agriculture such as food security or ecology have to be avoided. Agriculture delivers much more than options for mitigating greenhouse gas emissions and serving as a CO2 sink. We close this report with recommendations for the five most important goals to be realized in the context of mitigation and agriculture and proposals for concrete actions. First, soil organic carbon levels have to be preserved and, if possible, increased. Governments should include soil carbon sequestration in their mitigation and adaptation strategies and the climate funds should take a strong position on supporting such practices. Second, the implementation of closed nutrient cycles and optimal use of biomass has to be supported. Again, governments and funds should act on this. Policy instruments for nitrate regulation are a good starting point for this. As a third and most effective goal, we propose changes in food consumption and waste patterns. Without a switch to attitudes characterized by sufficiency, there is a danger that all attempts for mitigation remain futile. Finally, there are two goals for research, namely to develop improved knowledge on nitrous oxide dynamics, and on methods for assessment of multi-functional farming systems. Without this, adequate policy instruments for climate friendly agriculture and an optimal further development of it are not possible

    No-till agriculture – a climate smart solution?

    Get PDF
    No-tillage farming systems or no-till, as an aspect of conservation farming, are actively promoted by international research and development organizations to conserve soils and by this, ensure food security, biodiversity and water conservation. Instead of tilling before seeding, seeds are deposited directly into untilled soil by opening a narrow slot trench or band. Today, it is also seen as mitigation and adaptation option and thus being promoted as a measure to be supported under the United Nations Framework Convention on Climate Change (UNFCCC). There are even many voices advocating no-till to benefit from any future and existing carbon market. But: Is no-till the solution to reduce the hunger in the world and to mitigate climate change? It has been proven that no-till can signifi cantly reduce soil erosion and conserve water in the soils. This is regarded as a basis for higher and more stable crop yields – but science shows that this is not necessarily true. Discouragingly, there are numbers of examples of no yield benefits or even yield reductions under no-till in developing countries, especially in the first up to ten years. However, particularly the crop yields are crucial for the food security of small-scale farmers and not whether a method is more efficient or not. Although humus can be enriched under no-tillage, the sequestration of soil carbon, is result of the accumulated organic matter in the topsoil, is restricted to the upper 10 cm of the soil. Compared with ploughing, no carbon benefi t – or even a carbon defi cit – has been found at soil depths below 20 cm. This is why no-till makes little or no contribution to carbon sequestration and does not prove to reduce greenhouse gas emissions in croplands. The quantifi cation of carbon sequestration rates under no-till are highly doubtful. Anyhow, it is very likely that emission reductions generated from no-till projects in developing countries would serve to offset emissions from he industry and transport sector in developed countries. Those well quantifi ed emissions from developed countries would thus be offset by uncertain reductions from agriculture projects. The overall aim of the UNFCCC – to avoid dangerous climate change – would be jeopardized. Even if no-till became a promising mitigation option, other environmental problems would remain. No-till farming systems often come along with the industrialization of agriculture with high inputs of agrochemicals. On the one hand, small-scale farmers are not skilled in handling such chemicals. On the other hand there remains a risk that they apply cheap chemicals, which persist long-term in the environment. Efforts should therefore be strengthened on how to combine sustainable production systems such as organic agriculture with no-till practices. To summarize, there are too many open questions and uncertainties concerning the impact of no-till on crop yields and carbon sequestration, so that no-till could not be sold as the solution for hunger reduction and adequate option to mitigate climate change but as an important part of integrated strategies. Therefore, we recommend keeping no-till and reduced till out of the carbon market unless reliable carbon offset quantifi cation and monitoring can be undertaken at reasonable cost

    Jatropha

    Get PDF
    Die zunehmende Relevanz biomassebasierter Treibstoffe führt zu verstärktem Interesse an verschiedenen Pflanzen als Energielieferant (z.B. Mais und Zuckerrohr für Bio-Ethanol, oder Raps und Ölpalmen für Biodiesel). Ein grosses Potential für den Süden wird dabei Jatropha curcas, einer Pflanze mit sehr ölreichen Samen, zugesprochen. Gleichzeitig wird jedoch auch starke Kritik am Anbau von Jatropha geäussert. Dieses Merkblatt stellt das vorhandene Wissen zu Jatropha zusammen, betont die möglichen Vorteile, Nachteile und Wissenslücken, und gibt weiterführende Referenzen für eine vertiefte Auseinandersetzung damit an

    Klimaschutz durch Ă–kolandbau: Beitrag der bodenbĂĽrtigen Treibhausgasemissionen

    Get PDF
    Die Landwirtschaft ist für 10% der Treibhausgasemissionen der Europäischen Union verantwortlich. Eine systematische Zusammenfassung von wissenschaftlichen Vergleichen zwischen Treibhausgasemissionen ökologischer und konventioneller Landwirtschaft in gemäßigten Klimazonen zeigt positive Effekte ökologischer Bewirtschaftung. Im Durchschnitt weisen ökologisch bewirtschaftete Böden einen um 10% höheren Gehalt an organischem Bodenkohlenstoff, eine um 256 kg/ha höhere jährliche Kohlenstoffspeicherungsrate und 24% geringere Lachgasemissionen auf als konventionell bewirtschaftete Böden. Bisher gibt es nur wenige Vergleiche ökologischer und konventioneller Landwirtschaft bezüglich bodenbürtigen Methangasemissionen und keine Studien bezüglich Methangasemissionen aus Rindermägen

    Verbesserung der Jugendentwicklung von Sojabohnen durch Priming und Saatbeigaben

    Get PDF
    Das übergeordnete Ziel des Vorhabens ist, eine zügige und kräftige Jugendentwicklung von Sojabohnen durch Priming (vorquellen in Wasser) und Saatbeigaben zu erzielen und in ein praxisreifes Verfahren zu überführen. Beide Strategien werden bereits bei anderen Kulturen in der Praxis erfolgreich genutzt und die Wirkungen sind wissenschaftlich belegt. In verschiedenen Gefäß- und Keimversuchen wurden verschiedene Primingdauern und verschiedene Saatbeigabenpräparate getestet. In einem anschließenden 2-jährigen Feldversuch wurde die „beste“ Primingdauer (12 Stunden) sowie die beste Saatbeigabe (Mykoplant) untersucht. Dabei wurde das Jugendwachstum sowie die weitere Pflanzenentwicklung bis zur Ernte erfasst. Es hat sich gezeigt, dass die gewählte Art des Hydroprimings, sowie verschiedene Varianten davon, in Sojabohnen zu einer Reduzierung der Keimfähigkeit führt und das Jugendwachstum eher negativ als positiv beeinflusst. Bei den Saatbeigaben konnten z.T. positive Wirkungen gezeigt werden, allerdings sind diese zu gering für eine Praxisrelevanz. Die Ergebnisse wurden auf zahlreichen Fachtagungen als Poster oder Vortrag vorgestellt und mit anderen Wissenschaftlern diskutiert. Der Feldversuch wurde in beiden Jahren im Rahmen von Feldtagen präsentiert und besprochen. Im Rahmen des Projektes konnten eine Bachelor- sowie eine Masterarbeit realisiert werden. Eine systematische Literaturauswertung soll die bisher veröffentlichten Arbeiten zum Thema Hydropriming in Sojabohnen umfassend und quantitativ auswerten und so zu einem erheblichen Erkenntnisgewinn in diesem Bereich beitragen

    Klimafreundliche Landwirtschaft - Die besten Ansätze kommen aus dem Biolandbau

    Get PDF
    Die Landwirtschaft muss klimafreundlicher werden. Doch einzig auf Einsparmöglichkeiten zu fokussieren, ist keine Lösung: Der Landbau muss zukünftig weniger emittieren, fruchtbare Böden sowie die Biodiversität erhalten und gleichzeitig die Menschheit ernähren. Die besten Voraus setzungen hierfür hat die Ökolandwirtschaft

    Wie verhält sich Pflanzenkohle in Ackerböden?

    Get PDF
    Pflanzenkohle ist einer der Hauptbestandteile der Terra preta do indio, der Schwarzerde Amazoniens. Die Tatsache, dass diese Schwarzerde, höchstwahrscheinlich menschlichen Ursprungs, auch nach jahrhundertelanger Witterung im Regenwaldklima noch immer sehr fruchtbar ist, erstaunt. Die Ursachen, die zu dieser langanhaltenden Fruchtbarkeit führen, werden hauptsächlich der physikalischen und chemischen Beeinflussung des Bodens durch die Pflanzenkohle und deren Beständigkeit zugeschrieben
    • …
    corecore