1 research outputs found
Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models
The upcoming many-core architectures require software developers to exploit
concurrency to utilize available computational power. Today's high-level
language virtual machines (VMs), which are a cornerstone of software
development, do not provide sufficient abstraction for concurrency concepts. We
analyze concrete and abstract concurrency models and identify the challenges
they impose for VMs. To provide sufficient concurrency support in VMs, we
propose to integrate concurrency operations into VM instruction sets.
Since there will always be VMs optimized for special purposes, our goal is to
develop a methodology to design instruction sets with concurrency support.
Therefore, we also propose a list of trade-offs that have to be investigated to
advise the design of such instruction sets.
As a first experiment, we implemented one instruction set extension for
shared memory and one for non-shared memory concurrency. From our experimental
results, we derived a list of requirements for a full-grown experimental
environment for further research