387 research outputs found

    Assessing the Impact of Crowd Tasking Apps on Resuscitation Success: The Case of Sudden Cardiac Arrests in Germany

    Get PDF
    Sudden cardiac arrest (SCA) is among the three most prominent causes of death in industrialized nations. Therefore, experts are calling for solutions, including IT-systems to mobilize volunteers. SCA emergencies require immediate action and advanced first aid skills. As of today, emergency services are often unable to arrive at the victim in time, and laypeople on the scene frequently fail to conduct resuscitation properly. One approach to solve this problem is to rely on skilled volunteers, who are alerted by smartphone apps. Among others, German researchers are currently developing a crisis response system with a crowd tasking app. It aims to help reduce the effects of large-scale events, but also of ad-hoc incidents including SCA. This paper describes an approach to determine the potential of the system to increase the survival rate of SCA illustrated based upon data from Germany. Its concept was analyzed by experts and benefited from their feedback.BMBF, 13N12813, Verbesserte Krisenbewältigung im urbanen Raum durch situationsbezogene Helferkonzepte und Warnsysteme (ENSURE

    Micron‐Sized Pored Membranes Based on Polyvinylidene Difluoride Hexafluoropropylene Prepared by Phase Inversion Techniques

    Get PDF
    In this study, micron‐sized pored membranes, based on the co‐polymer polyvinylidene difluoride hexafluoropropylene (PVdF‐HFP) were prepared via phase inversion techniques. The aim of the approach was to find less harmful and less toxic solvents to fabricate such films. Therefore, the Hansen solubility approach was used to identify safer and less toxic organic solvents for the phase inversion process, relative to present solvent mixtures, based on acetone, dimethyl formamide, dimethyl acetamide or methanol. With this approach, it was possible to identify cyclopentanone, ethylene glycol and benzyl alcohol as suitable solvents for the membrane preparation process. Physicochemical and mechanical properties were analyzed and compared, which revealed a uniform membrane structure through the cross section. Differences were observed at the top surface, in dependence of both preparation approaches, which are described in detail

    A short time expansion measurement method for the detection of aging effect of lithium ion cells using a high resolution laser interfometric setup

    Get PDF
    In this work a new expansion measurement methodology for the detection of ageing mechanisms in lithium ion cells is described and evaluated. For this purpose, a polarization-optical homodyne Michelson interferometer with a resolution of approx. 10 nm was set up to allow measurements of different cell types, cell sizes, and cell chemistry within a Memmert IP55 climate chamber. The used interferometric measurement setup is ten times more accurate than measurement systems commonly used for battery measurements in the literature. The better spatial resolution of an interferometer setup enables the recording of the expansion response to short current pulses with low transferred charge. This offers the possibility to detect ageing mechanisms such as lithium plating within short measuring times. With this measurement setup, a lithium iron phosphate pouch cell from the company A123, with the model identification AMP20M1HD-A, is measured. First, an expansion measurement over a full charge and discharge cycle with a constant load of ±C/20 (=b1 A) is performed. Here, the cell undergoes an expansion of about 42 µm. Subsequently, the in this work proposed measurement methodology is presented to show the influence of effects such as the formation of overshooting graphite stages or lithium plating on cell expansion. For this purpose, at a residual capacitance of 50%, the cell is pulsed with current of different intensity I ¿ {±20 A, ±80 A} for t = {240 s, 60 s}, at T = {10 °C, 20 °C, 30 °C}, respectively, and the mechanical response is recorded using the high accuracy interferometer setup. A mechanical relaxation of the cell after the pulses with a time constant in the range between 10 s and 20 s can be observed. It is shown that this relaxation behavior can be associated with effects of the anode known from the literature, such as the formation of overshooting graphite stages or lithium plating. These effects can be recorded by the very high-resolution measurement already with little transferred charge and within a short measurement time.Peer ReviewedPostprint (published version

    Workshop Lebensmittelverschwendung

    Full text link
    2. Zero hunger15. Life on land3. Good health and well-bein

    Burst of corneal dendritic cells during Trastuzumab and Paclitaxel treatment

    Get PDF
    During breast cancer therapy, paclitaxel and trastuzumab are both associated with adverse effects such as chemotherapy-induced peripheral neuropathy and other systemic side effects including ocular complications. Corneal nerves are considered part of the peripheral nervous system and can be imaged non-invasively by confocal laser scanning microscopy (CLSM) on the cellular level. Thus, in vivo CLSM imaging of structures of the corneal subbasal nerve plexus (SNP) such as sensory nerves or dendritic cells (DCs) can be a powerful tool for the assessment of corneal complications during cancer treatment. During the present study, the SNP of a breast cancer patient was analyzed over time by using large-scale in vivo CLSM in the course of paclitaxel and trastuzumab therapy. The same corneal regions could be re-identified over time. While the subbasal nerve morphology did not alter significantly, a change in dendritic cell density and an additional local burst within the first 11 weeks of therapy was detected, indicating treatment-mediated corneal inflammatory processes. Ocular structures such as nerves and dendritic cells could represent useful biomarkers for the assessment of ocular adverse effects during cancer therapy and their management, leading to a better visual prognosis

    3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus

    Get PDF
    The capability of corneal confocal microscopy (CCM) to acquire high-resolution in vivo images of the densely innervated human cornea has gained considerable interest in using this non-invasive technique as an objective diagnostic tool for staging peripheral neuropathies. Morphological alterations of the corneal subbasal nerve plexus (SNP) assessed by CCM have been shown to correlate well with the progression of neuropathic diseases and even predict future-incident neuropathy. Since the field of view of single CCM images is insufficient for reliable characterisation of nerve morphology, several image mosaicking techniques have been developed to facilitate the assessment of the SNP in large-area visualisations. Due to the limited depth of field of confocal microscopy, these approaches are highly sensitive to small deviations of the focus plane from the SNP layer. Our contribution proposes a new automated solution, combining guided eye movements for rapid expansion of the acquired SNP area and axial focus plane oscillations to guarantee complete imaging of the SNP. We present results of a feasibility study using the proposed setup to evaluate different oscillation settings. By comparing different image selection approaches, we show that automatic tissue classification algorithms are essential to create high-quality mosaic images from the acquired 3D dataset
    corecore