25 research outputs found

    Stress-vs-time signals allow the prediction of structurally catastrophic events during fracturing of immature cartilage and predetermine the biomechanical, biochemical, and structural impairment

    Get PDF
    Objective Trauma-associated cartilage fractures occur in children and adolescents with clinically significant incidence. Several studies investigated biomechanical injury by compressive forces but the injury-related stress has not been investigated extensively. In this study, we hypothesized that the biomechanical stress occurring during compressive injury predetermines the biomechanical, biochemical, and structural consequences. We specifically investigated whether the stress-vs-time signal correlated with the injurious damage and may allow prediction of cartilage matrix fracturing. Methods Superficial and deeper zones disks (SZDs, DZDs; immature bovine cartilage) were biomechanically characterized, injured (50% compression, 100%/s strain-rate), and re-characterized. Correlations of the quantified functional, biochemical and histological damage with biomechanical parameters were zonally investigated. Results Injured SZDs exhibited decreased dynamic stiffness (by 93.04 ± 1.72%), unresolvable equilibrium moduli, structural damage (2.0 ± 0.5 on a 5-point-damage-scale), and 1.78-fold increased sGAG loss. DZDs remained intact. Measured stress-vs-time-curves during injury displayed 4 distinct shapes, which correlated with histological damage (p < 0.001), loss of dynamic stiffness and sGAG (p < 0.05). Damage prediction in a blinded experiment using stress-vs-time grades was 100%-correct and sensitive to differentiate single/complex matrix disruptions. Correlations of the dissipated energy and maximum stress rise with the extent of biomechanical and biochemical damage reached significance when SZDs and DZDs were analyzed as zonal composites but not separately. Conclusions The biomechanical stress that occurs during compressive injury predetermines the biomechanical, biochemical, and structural consequences and, thus, the structural and functional damage during cartilage fracturing. A novel biomechanical method based on the interpretation of compressive yielding allows the accurate prediction of the extent of structural damage.National Institutes of Health (U.S.) (Grant R01-AR45779)Deutsche Forschungsgemeinschaft (Grant RO2511/1-1)Deutsche Forschungsgemeinschaft (Grant RO2511/2-1)Germany. Federal Ministry of Education and Research (Grant 01KQ0902B TP2

    Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue.</p> <p>Methods</p> <p>A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured <it>in vitro </it>and <it>in vivo </it>in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific <it>in situ </it>hybridization was performed to discriminate between cells of human and murine origin in xenotransplants.</p> <p>Results</p> <p>The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. <it>In vitro </it>and <it>in vivo </it>(subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels <it>in vitro </it>and <it>in vivo</it>, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of the intervertebral disc. Moreover, mouse implanted hydrogels accumulated 5 times more glycosaminoglycans and 50 times more collagen than the <it>in vitro </it>cultured gels, the latter instead releasing equivalent quantities of glycosaminoglycans and collagen into the culture medium. Matrix deposition could be specified by immunohistology for collagen types I and II, and aggrecan and was found only in areas where predominantly cells of human origin were detected by species specific <it>in situ </it>hybridization.</p> <p>Conclusions</p> <p>The data demonstrate that the hydrogels form stable implants capable to contain a specifically functional cell population within a physiological environment.</p

    RUB: brutal schön?

    Get PDF
    RUB: brutal schön? Ein Ausstellungsbuch Die Ruhr-Universität Bochum ist auch ein Stück Architekturgeschichte. Darauf machen hier Bochumer Studierende der Kunstwissenschaft aufmerksam, insbesondere auf die stilgeschichtliche Frage des Brutalismus. Neu in den Blick kommen dabei beispielsweise der Außenraum der Universität, aber auch Erfahrungen von Zeitzeugen aus der Gründungszeit. Die Publikation basiert auf einer Ausstellung im Herbst 2019, die als studentisches Projekt entstand. Hg. von Cornelia Jöchner, mit Grußworten von Axel Schölmerich, Erdmute Lapp, Constantin Goschle

    Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete.</p> <p>Methods/Design</p> <p>Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG).</p> <p>Discussion</p> <p>ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions.</p> <p>The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments.</p> <p>Trial Registration</p> <p>The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, <url>http://www.trialregister.nl</url>, number NTR1665).</p

    Feasibility, Usability, and Safety of ParaGym, an Intelligent Mobile Exercise App for Individuals With Paraplegia: Protocol for a Pilot Block-Randomized Controlled Trial

    No full text
    BackgroundExercise is crucial for individuals with paraplegia to reduce the risk of secondary diseases and improve independence and quality of life. However, numerous barriers such as inadequate accessibility restrict their participation in exercise programs. Digital exercise apps can help overcome these barriers. Personalization is considered a crucial feature of mobile exercise apps, as people with paraplegia have individual requirements regarding exercise programs depending on their level of impairment. Despite the increasing popularity of mobile exercise apps, there are none available that target the individual needs of this cohort. The ParaGym mobile exercise app prototype was designed to automatically tailor exercise sessions to the individual needs of users with paraplegia. ObjectiveThis study aims to evaluate the feasibility, usability, safety, and preliminary effectiveness of the ParaGym mobile exercise app prototype. MethodsThis pilot block-randomized controlled feasibility trial will include 45 adult participants with paraplegia. Eligible participants will be block randomized to either the intervention or waitlist control group. The intervention group will perform a 6-week exercise program using the ParaGym mobile exercise app, comprising three 35-minute exercise sessions per week. The waitlist control group will continue their usual care and receive access to the app after study completion. Participants will record all exercise sessions conducted with the app as well as additional exercise sessions conducted during the study period using exercise diaries. The primary outcomes include feasibility, usability, and safety. Feasibility will be assessed through semistructured interviews, study adherence, and retention rates. Usability will be measured using the System Usability Scale. Safety will be determined by the occurrence of adverse events. Secondary outcomes include the effects of the intervention on peak exercise capacity (VO2 peak); handgrip strength; independence, which will be measured using the Spinal Cord Independence Measure III (SCIM III); and health-related quality of life, which will be measured using the Short Form–36 Health Survey (SF-36). ResultsRecruitment commenced in November 2022. Overall, 12 participants were enrolled at the time of submission. Data collection commenced in January 2023, with completion expected in April 2023. ConclusionsTo the best of our knowledge, this is the first study to assess the feasibility, usability, and safety of an intelligent mobile exercise app for individuals with paraplegia. Thereafter, the app should be adapted according to the findings of this trial. Future trials with an updated version of the app should aim for a larger sample size, longer intervention duration, and more diverse target group. In the long term, a fully marketable version of the ParaGym app should be implemented. This would increase the access to personalized, independent, and evidence-based exercise training for this cohort and, in the future, other people who use wheelchairs. Trial RegistrationGerman Clinical Trials Register DRKS00030370; https://drks.de/search/de/trial/DRKS00030370 International Registered Report Identifier (IRRID)DERR1-10.2196/4565

    Hepatic Osteodystrophy—Molecular Mechanisms Proposed to Favor Its Development

    No full text
    Almost all patients with chronic liver diseases (CLD) show altered bone metabolism. Depending on the etiology, this manifests in a severe osteoporosis in up to 75% of the affected patients. Due to high prevalence, the generic term hepatic osteodystrophy (HOD) evolved, describing altered bone metabolism, decreased bone mineral density, and deterioration of bone structure in patients with CLD. Once developed, HOD is difficult to treat and increases the risk of fragility fractures. Existing fractures affect the quality of life and, more importantly, long-term prognosis of these patients, which presents with increased mortality. Thus, special care is required to support the healing process. However, for early diagnosis (reduce fracture risk) and development of adequate treatment strategies (support healing of existing fractures), it is essential to understand the underlying mechanisms that link disturbed liver function with this bone phenotype. In the present review, we summarize proposed molecular mechanisms favoring the development of HOD and compromising the healing of associated fractures, including alterations in vitamin D metabolism and action, disbalances in transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signaling with histone deacetylases (HDACs) as secondary regulators, as well as alterations in the receptor activator of nuclear factor kappa B ligand (RANKL)–osteoprotegerin (OPG) system mediated by sclerostin. Based on these mechanisms, we give an overview on the limitations of early diagnosis of HOD with established serum markers

    Hepatic Osteodystrophy—Molecular Mechanisms Proposed to Favor Its Development

    No full text
    Almost all patients with chronic liver diseases (CLD) show altered bone metabolism. Depending on the etiology, this manifests in a severe osteoporosis in up to 75% of the affected patients. Due to high prevalence, the generic term hepatic osteodystrophy (HOD) evolved, describing altered bone metabolism, decreased bone mineral density, and deterioration of bone structure in patients with CLD. Once developed, HOD is difficult to treat and increases the risk of fragility fractures. Existing fractures affect the quality of life and, more importantly, long-term prognosis of these patients, which presents with increased mortality. Thus, special care is required to support the healing process. However, for early diagnosis (reduce fracture risk) and development of adequate treatment strategies (support healing of existing fractures), it is essential to understand the underlying mechanisms that link disturbed liver function with this bone phenotype. In the present review, we summarize proposed molecular mechanisms favoring the development of HOD and compromising the healing of associated fractures, including alterations in vitamin D metabolism and action, disbalances in transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signaling with histone deacetylases (HDACs) as secondary regulators, as well as alterations in the receptor activator of nuclear factor kappa B ligand (RANKL)–osteoprotegerin (OPG) system mediated by sclerostin. Based on these mechanisms, we give an overview on the limitations of early diagnosis of HOD with established serum markers

    Empfehlungen zur Diagnostik und Therapie oberer Halswirbelsäulenverletzungen: Atlasfrakturen

    Full text link
    In a consensus process with four sessions in 2017, the working group on "the upper cervical spine" of the German Society for Orthopaedic and Trauma Surgery (DGOU) formulated "Therapeutic Recommendations for the Diagnosis and Treatment of Fractures to the Upper Cervical Spine", incorporating their own experience and current literature. The following article describes the recommendations for the atlas vertebra. About 10% of all cervical spine injuries include the axis vertebra. The diagnostic process primarily aims to detect the injury and to determine joint incongruency and integrity of the atlas ring. For classification purposes, the Gehweiler classification and the Dickman classification are suitable. The Canadian c-spine rule is recommended for clinical screening for c-spine injuries. CT is the preferred imaging modality; MRI is needed to determine the integrity of the Lig. transversum atlantis in complete atlas ring fractures. Conservative treatment is appropriate in very many atlas fractures. Surgical treatment is recommended in existing or potential joint incongruity or instability, which are frequently seen in Gehweiler IIIB or Gehweiler IV fractures. Posterior atlanto-axial stabilisation and fusion using transarticular screws or an internal fixator are regarded as a gold standard in the majority of surgical cases. Especially in young patients, the possibility of isolated atlas osteosynthesis should be checked. A possible option for Gehweiler IV fractures is halo-fixation with mild distraction for ligamentotaxis. Secondary dislocation should be checked for frequently. Involvement of the occipito-atlantal joint complex requires stabilisation of the occiput as well
    corecore