58 research outputs found
Origin of ferromagnetism in (Zn,Co)O from magnetization and spin-dependent magnetoresistance
In order to elucidate the nature of ferromagnetic signatures observed in
(Zn,Co)O we have examined experimentally and theoretically magnetic properties
and spin-dependent quantum localization effects that control low-temperature
magnetoresistance. Our findings, together with a through structural
characterization, substantiate the model assigning spontaneous magnetization of
(Zn,Co)O to uncompensated spins at the surface of antiferromagnetic nanocrystal
of Co-rich wurtzite (Zn,Co)O. The model explains a large anisotropy observed in
both magnetization and magnetoresistance in terms of spin hamiltonian of Co
ions in the crystal field of the wurtzite lattice.Comment: 6 pages, 6 figure
Spin-related magnetoresistance of n-type ZnO:Al and Zn_{1-x}Mn_{x}O:Al thin films
Effects of spin-orbit coupling and s-d exchange interaction are probed by
magnetoresistance measurements carried out down to 50 mK on ZnO and
Zn_{1-x}Mn_{x}O with x = 3 and 7%. The films were obtained by laser ablation
and doped with Al to electron concentration ~10^{20} cm^{-3}. A quantitative
description of the data for ZnO:Al in terms of weak-localization theory makes
it possible to determine the coupling constant \lambda_{so} = (4.4 +-
0.4)*10^{-11} eVcm of the kp hamiltonian for the wurzite structure, H_{so} =
\lambda_{so}*c(s x k). A complex and large magnetoresistance of
Zn_{1-x}Mn_{x}O:Al is interpreted in terms of the influence of the s-d
spin-splitting and magnetic polaron formation on the disorder-modified
electron-electron interactions. It is suggested that the proposed model
explains the origin of magnetoresistance observed recently in many magnetic
oxide systems.Comment: 4 pages, 4 figure
Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations
Magnetic and magneto-transport properties of thin layers of the
(Ga,Mn)(Bi,As) quaternary dilute magnetic semiconductor grown by the
low-temperature molecular-beam epitaxy technique on GaAs substrates have been
investigated. Ferromagnetic Curie temperature and magneto-crystalline
anisotropy of the layers have been examined by using magneto-optical Kerr
effect magnetometry and low-temperature magneto-transport measurements.
Postgrowth annealing treatment has been shown to enhance the hole concentration
and Curie temperature in the layers. Significant increase in the magnitude of
magnetotransport effects caused by incorporation of a small amount of Bi into
the (Ga,Mn)As layers revealed in the planar Hall effect (PHE) measurements, is
interpreted as a result of enhanced spin-orbit coupling in the (Ga,Mn)(Bi,As)
layers. Two-state behaviour of the planar Hall resistance at zero magnetic
field provides its usefulness for applications in nonvolatile memory devices.Comment: 10 pages, 3 figures, to be published in the Proceedings of ICSM-2016
conferenc
Ising Quantum Hall Ferromagnet in Magnetically Doped Quantum Wells
We report on the observation of the Ising quantum Hall ferromagnet with Curie
temperature as high as 2 K in a modulation-doped (Cd,Mn)Te
heterostructure. In this system field-induced crossing of Landau levels occurs
due to the giant spin-splitting effect. Magnetoresistance data, collected over
a wide range of temperatures, magnetic fields, tilt angles, and electron
densities, are discussed taking into account both Coulomb electron-electron
interactions and sd coupling to Mn spin fluctuations. The critical behavior
of the resistance ``spikes'' at corroborates theoretical
suggestions that the ferromagnet is destroyed by domain excitations.Comment: revised, 4 pages, 4 figure
Carrier-induced ferromagnetism in p-Zn1-xMnxTe
We present a systematic study of the ferromagnetic transition induced by the
holes in nitrogen doped Zn1-xMnxTe epitaxial layers, with particular emphasis
on the values of the Curie-Weiss temperature as a function of the carrier and
spin concentrations. The data are obtained from thorough analyses of the
results of magnetization, magnetoresistance and spin-dependent Hall effect
measurements. The experimental findings compare favorably, without adjustable
parameters, with the prediction of the Rudermann-Kittel-Kasuya-Yosida (RKKY)
model or its continuous-medium limit, that is, the Zener model, provided that
the presence of the competing antiferromagnetic spin-spin superexchange
interaction is taken into account, and the complex structure of the valence
band is properly incorporated into the calculation of the spin susceptibility
of the hole liquid. In general terms, the findings demonstrate how the
interplay between the ferromagnetic RKKY interaction, carrier localization, and
intrinsic antiferromagnetic superexchange affects the ordering temperature and
the saturation value of magnetization in magnetically and electrostatically
disordered systems.Comment: 14 pages, 10 figure
Quantum Hall states under conditions of vanishing Zeeman energy
We report on magneto-transport measurements of a two-dimensional electron gas
confined in a CdMnTe quantum well structure under
conditions of vanishing Zeeman energy. The electron Zeeman energy has been
tuned via the exchange interaction in order to probe different quantum
Hall states associated with metallic and insulating phases. We have observed
that reducing Zeeman energy to zero does not necessary imply the disappearing
of quantum Hall states, i.e. a closing of the spin gap. The spin gap value
under vanishing Zeeman energy conditions is shown to be dependent on the
filling factor. Numerical simulations support a qualitative description of the
experimental data presented in terms of a crossing or an avoided-crossing of
spin split Landau levels with same orbital quantum number
Ferromagnetism and Electronic Structure of (Ga,Mn)As:Bi and (Ga,Mn)As Epitaxial Layers
The photoreflectance (PR) spectroscopy was applied to study the band-structure in GaAs:Bi, (Ga,Mn)As and (Ga,Mn)As:Bi layers with the 4% of Mn and 1 % of Bi content and, as a reference, undoped GaAs layer. All films were grown by low temperature (LT) MBE on semi-insulating (001) GaAs substrates. Photoreflec-tance studies were supported by Raman spectroscopy and high resolution X-ray diffractometry (XRD) measurements. Magnetic properties of the films were characterized with a superconducting quantum in-terference device (SQUID) magnetometer. Our findings were interpreted in terms of the model, which as-sumes that the mobile holes residing in the valence band of GaAs and the Fermi level position determined by the concentration of valence-band holes.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3533
Photoreflectance Study of the Fundamental Optical Properties of (Ga,Mn)As Epitaxial Films
Fundamental optical properties of thin films of (Ga,Mn)As diluted
ferromagnetic semiconductor with a low (1%) and high (6%) Mn content and of a
reference GaAs film, grown by low-temperature molecular-beam epitaxy, have been
investigated by photoreflectance (PR) spectroscopy. In addition, the films were
subjected to complementary characterization by means of superconducting quantum
interference device (SQUID) magnetometry, Raman spectroscopy, and high
resolution X-ray diffractometry. Thorough full-line-shape analysis of the PR
spectra, which enabled determination of the E0 electronic transition in
(Ga,Mn)As, revealed significant differences between the energy band structures
in vicinity of the {\Gamma} point of the Brillouin zone for the two (Ga,Mn)As
films. In view of the obtained experimental results the evolution of the
valence band structure in (Ga,Mn)As with increasing Mn content is discussed,
pointing to a merging the Mn-related impurity band with the host GaAs valence
band for high Mn content.Comment: 21 pages, 6 figure
- …