8 research outputs found

    Significant difference between three observers in the assessment of intraepidermal nerve fiber density in skin biopsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The determination of Intraepidermal Nerve Fiber Density (IENFD) in skin biopsy is a useful method for the evaluation of different types of peripheral neuropathies. To allow a reliable use of the method it is necessary to determine interobserver reliability. Previous studies dealing with this topic used limited suitable statistical methods.</p> <p>Methods</p> <p>In the present study three observers determined the IENFD and estimated the staining quality of the basement membrane for an adequate quantity of 120 skin biopsies (stained with indirect immunofluorescence technique) from 68 patients. More adequate statistical methods like intraclass correlation coefficient and Bland Altman Plot were chosen to estimate interobserver reliability.</p> <p>Results</p> <p>We found an unexpected significant difference in IENFD between the observers (p < 0.05) and so the results of this study are not in line with the high interobserver reliability reported before (intraclass correlation coefficient: 0.73). The Bland Altmann Plot showed a variance growing with rising mean. The difference in IENFD between the observers and the resulting low interobserver reliability is likely caused by different interpretations of the standard counting rules. There was no significant difference in IENFD between observers for biopsies with a well-defined basement membrane. Thus skin biopsies with an inexactly defined basement membrane should not be used diagnostically for the determination of IENFD.</p> <p>Conclusion</p> <p>These results emphasise that standardisation of the method is extremely important and at least two observers should analyse skin biopsies with critical IENFD near the cut-off values.</p

    Cortical disinhibition occurs in chronic neuropathic, but not in chronic nociceptive pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to examine the relationship between chronic neuropathic pain after incomplete peripheral nerve lesion, chronic nociceptive pain due to osteoarthritis, and the excitability of the motor cortex assessed by transcranial magnetic stimulation (TMS). Hence in 26 patients with neuropathic pain resulting from an isolated incomplete lesion of the median or ulnar nerve (neuralgia), 20 patients with painful osteoarthritis of the hand, and 14 healthy control subjects, the excitability of the motor cortex was tested using paired-pulse TMS to assess intracortical inhibition and facilitation. These excitability parameters were compared between groups, and the relationship between excitability parameters and clinical parameters was examined.</p> <p>Results</p> <p>We found a significant reduction of intracortical inhibition in the hemisphere contralateral to the lesioned nerve in the neuralgia patients. Intracortical inhibition in the ipsilateral hemisphere of neuralgia patients and in both hemispheres of osteoarthritis patients did not significantly differ from the control group. Disinhibition was significantly more pronounced in neuralgia patients with moderate/severe pain intensity than in patients with mild pain intensity, whereas the relative compound motor action potential as a parameter of nerve injury severity did not correlate with the amount of disinhibition.</p> <p>Conclusions</p> <p>Our results suggest a close relationship between motor cortex inhibition and chronic neuropathic pain in the neuralgia patients, which is independent from nerve injury severity. The lack of cortical disinhibition in patients with painful osteoarthritis points at differences in the pathophysiological processes of different chronic pain conditions with respect to the involvement of different brain circuitry.</p

    Transient Receptor Potential Channel Polymorphisms Are Associated with the Somatosensory Function in Neuropathic Pain Patients

    Get PDF
    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In this study we found no evidence that genetic variants of transient receptor potential channels are involved in the expression of neuropathic pain, but transient receptor potential channel polymorphisms contributed significantly to the somatosensory abnormalities of neuropathic pain patients
    corecore