2 research outputs found

    Individually Stabilized, Superparamagnetic Nanoparticles with Controlled Shell and Size Leading to Exceptional Stealth Properties and High Relaxivities

    No full text
    Superparamagnetic iron oxide nanoparticles (SPION) have received immense interest for biomedical applications, with the first clinical application as negative contrast agent in magnetic resonance imaging (MRI). However, the first generation MRI contrast agents with dextran-enwrapped, polydisperse iron oxide nanoparticle clusters are limited to imaging of the liver and spleen; this is related to their poor colloidal stability in biological media and inability to evade clearance by the reticulo­endothelial system. We investigate the qualitatively different performance of a new generation of individually PEG-grafted core–shell SPION in terms of relaxivity and cell uptake and compare them to benchmark iron oxide contrast agents. These PEG-grafted SPION uniquely enable relaxivity measurements in aqueous suspension without aggregation even at 9.4 T magnetic fields due to their extraordinary colloidal stability. This allows for determination of the size-dependent scaling of relaxivity, which is shown to follow a <i>d</i><sup>2</sup> dependence for identical core–shell structures. The here introduced core–shell SPION with ∼15 nm core diameter yield a higher <i>R</i><sub>2</sub> relaxivity than previous clinically used contrast agents as well as previous generations of individually stabilized SPION. The colloidal stability extends to control over evasion of macrophage clearance and stimulated uptake by SPION functionalized with protein ligands, which is a key requirement for targeted MRI

    Interaction of Size-Tailored PEGylated Iron Oxide Nanoparticles with Lipid Membranes and Cells

    No full text
    Targeted nanomedicine builds on the concept that nanoparticles can be directed to specific tissues while remaining inert to others organs. Many studies have been performed on the synthesis and cellular interactions of core–shell nanoparticles, in which a functional inorganic core is coated with a biocompatible polymer layer that should reduce nonspecific uptake and cytotoxicity. However, work is lacking that relates structural parameters of the core–shell structure and colloidal properties directly to interactions with cell membranes and further correlates these interactions to cell uptake. We have synthesized monodisperse (SD < 10%), single-crystalline, and superparamagnetic iron oxide nanoparticles (SPION) of different core size (3–8 nm) that are densely grafted with nitrodopamine-poly­(ethylene glycol) (NDA-PEG­(5 kDa)) brushes. We investigated the interactions of the PEGylated SPION with biomimetic membranes and cancer and kidney cells. It is shown that a dense homogeneous PEG shell suppresses membrane interactions and cell uptake but that nanoparticle curvature can influence membrane interactions for similarly grafted nanoparticles. Weak adsorption to anionic lipid membranes is shown to correlate with eukaryote cell uptake and is attributed to double-layer interactions without direct membrane penetration. This attraction is strongly suppressed during physiological conditions and leads to unprecedented low cell uptake and full cell viability when compared to those of traditional dextran-coated SPION. Less curved (larger core) PEGylated SPION show weaker membrane adsorption and lower cell uptake due to effectively denser shells. These results provide a better understanding of design criteria for core–shell nanoparticles in terms of avoiding nonspecific uptake by cells, reducing toxicity, and increasing circulation time
    corecore