30 research outputs found

    Data in support of sustained upregulation of adaptive redox homeostasis mechanisms caused by KRIT1 loss-of-function

    Get PDF
    This article contains additional data related to the original research article entitled “KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: implication for Cerebral Cavernous Malformation disease” (Antognelli et al., 2017) [1].Data were obtained by si-RNA-mediated gene silencing, qRT-PCR, immunoblotting, and immunohistochemistry studies, and enzymatic activity and apoptosis assays. Overall, they support, complement and extend original findings demonstrating that KRIT1 loss-of-function induces a redox-sensitive and JNK-dependent sustained upregulation of the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), and a drop in intracellular levels of AP-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that sensitizes cells to oxidative DNA damage and apoptosis.In particular, immunoblotting analyses of Nrf2, Glo1, AP-modified Hsp70 and Hsp27 proteins, HO-1, phospho-c-Jun, phospho-ERK5, and KLF4 expression levels were performed both in KRIT1-knockout MEF cells and in KRIT1-silenced human brain microvascular endothelial cells (hBMEC) treated with the antioxidant Tiron, and compared with control cells. Moreover, immunohistochemistry analysis of Nrf2, Glo1, phospho-JNK, and KLF4 was performed on histological samples of human CCM lesions. Finally, the role of Glo1 in the downregulation of AP-modified Hsp70 and Hsp27 proteins, and the increase in apoptosis susceptibility associated with KRIT1 loss-of-function was addressed by si-RNA-mediated Glo1 gene silencing in KRIT1-knockout MEF cells. Keywords: Cerebrovascular disease, Cerebral cavernous malformations, CCM1/KRIT1, Oxidative stress, Antioxidant defense, Adaptive redox homeostasis, Redox signaling, Nuclear factor erythroid 2-related factor 2 (Nrf2), c-Jun, Glyoxalase 1 (Glo1), Heme oxygenase-1 (HO-1), Argpyrimidine-modified heat-shock proteins, Oxidative DNA damage and apoptosi

    Heterozygous Loss of KRIT1 in Mice Affects Metabolic Functions of the Liver, Promoting Hepatic Oxidative and Glycative Stress

    Get PDF
    KRIT1 loss-of-function mutations underlie the pathogenesis of Cerebral Cavernous Malformation (CCM), a major vascular disease affecting the central nervous system (CNS). However, KRIT1 is also expressed outside the CNS and modulates key regulators of metabolic and oxy-inflammatory pathways, including the master transcription factor FoxO1, suggesting a widespread functional significance. Herein, we show that the KRIT1/FoxO1 axis is implicated in liver metabolic functions and antioxidative/antiglycative defenses. Indeed, by performing comparative studies in KRIT1 heterozygous (KRIT1+/−) and wild-type mice, we found that KRIT1 haploinsufficiency resulted in FoxO1 expression/activity downregulation in the liver, and affected hepatic FoxO1-dependent signaling pathways, which are markers of major metabolic processes, including gluconeogenesis, glycolysis, mitochondrial respiration, and glycogen synthesis. Moreover, it caused sustained activation of the master antioxidant transcription factor Nrf2, hepatic accumulation of advanced glycation end-products (AGEs), and abnormal expression/activity of AGE receptors and detoxifying systems. Furthermore, it was associated with an impairment of food intake, systemic glucose disposal, and plasma levels of insulin. Specific molecular alterations detected in the liver of KRIT1+/− mice were also confirmed in KRIT1 knockout cells. Overall, our findings demonstrated, for the first time, that KRIT1 haploinsufficiency affects glucose homeostasis and liver metabolic and antioxidative/antiglycative functions, thus inspiring future basic and translational studies

    KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease

    Get PDF
    KRIT1 (CCM1) is a disease gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease of proven genetic origin affecting 0.3â0.5% of the population. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered redox homeostasis and abnormal activation of the redox-sensitive transcription factor c-Jun, which collectively result in pro-oxidative, pro-inflammatory and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease and raising the possibility that KRIT1 loss-of-function exerts pleiotropic effects on multiple redox-sensitive mechanisms. To address this possibility, we investigated major redox-sensitive pathways and enzymatic systems that play critical roles in fundamental cytoprotective mechanisms of adaptive responses to oxidative stress, including the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), a pivotal stress-responsive defense enzyme involved in cellular protection against glycative and oxidative stress through the metabolism of methylglyoxal (MG). This is a potent post-translational protein modifier that may either contribute to increased oxidative molecular damage and cellular susceptibility to apoptosis, or enhance the activity of major apoptosis-protective proteins, including heat shock proteins (Hsps), promoting cell survival. Experimental outcomes showed that KRIT1 loss-of-function induces a redox-sensitive sustained upregulation of Nrf2 and Glo1, and a drop in intracellular levels of MG-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that counteracts intrinsic oxidative stress but increases susceptibility to oxidative DNA damage and apoptosis, sensitizing cells to further oxidative challenges. While supporting and extending the pleiotropic functions of KRIT1, these findings shed new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell predisposition to oxidative damage, thus providing valuable new insights into CCM pathogenesis and novel options for the development of preventive and therapeutic strategies

    Yeast-derived recombinant avenanthramides inhibit proliferation, migration and epithelial mesenchymal transition of colon cancer cells

    Get PDF
    Avenanthramides (Avns), polyphenols found exclusively in oats, are emerging as promising therapeutic candidates for the treatment of several human diseases, including colon cancer. By engineering a Saccharomyces cerevisiae strain, we previously produced two novel phenolic compounds, N-(E)-p-coumaroyl-3-hydroxyanthranilic acid (Yeast avenanthramide I, YAvnI) and N-(E)-caffeoyl-3-hydroxyanthranilic acid (Yeast avenanthramide II, YAvnII), which are endowed with a structural similarity to bioactive oat avenanthramides and stronger antioxidant properties. In this study, we evaluated the ability of these yeast-derived recombinant avenanthramides to inhibit major hallmarks of colon cancer cells, including sustained proliferation, migration and epithelial-mesenchymal transition (EMT). Using the human colon adenocarcinoma cell line HT29, we compared the impact of YAvns and natural Avns, including Avn-A and Avn-C, on colon cancer cells by performing MTT, clonogenic, adhesion, migration, and anchorage-independent growth assays, and analyzing the expression of EMT markers. We found that both YAvns and Avns were able to inhibit colon cancer cell growth by increasing the expression of p21, p27 and p53 proteins. However, YAvns resulted more effective than natural compounds in inhibiting cancer cell migration and reverting major molecular features of the EMT process, including the down-regulation of E-cadherin mRNA and protein levels

    Educatori di professione oggi. Letture oblique dell'esperienza e orientamenti per il futuro

    Get PDF
    Gli educatori di professione nascono negli anni Ottanta, sulla spinta di un'apertura al territorio che ha visto coinvolti sia servizi tradizionali di cura sia le strutture che via via sorgevano in risposta a bisogni ed istanze fino ad allora disattese dal sistema socio-sanitario. A circa 30 anni dagli albori della professione, il libro esplora le storie di decine di educatori di lunga esperienza, cercando di fare emergere vissuti e desideri, luci e ombre nel lavoro quotidiano con la disabilit\ue0 adulta, la malattia psichiatrica, le dipendenze patologiche, i minori e le famiglie, gli adulti e la comunit\ue0, gli anziani. Con un approccio fenomenologico e narrativo, gli educatori autori di questo volume hanno cercato di scrutare "dietro le quinte" della professione, raccontando ci\uf2 che per abitudine o per impostazione epistemologica in genere sfugge, quella "vita che sta dentro" il lavoro educativo, gli aneliti e le fatiche di cui \ue8 intriso il quotidiano. L'obiettivo del libro \ue8 quello di individuare alcuni elementi in grado di sostenere la specificit\ue0, l'attualit\ue0 e la dignit\ue0 di questa professione

    Clinical Features, Cardiovascular Risk Profile, and Therapeutic Trajectories of Patients with Type 2 Diabetes Candidate for Oral Semaglutide Therapy in the Italian Specialist Care

    Get PDF
    Introduction: This study aimed to address therapeutic inertia in the management of type 2 diabetes (T2D) by investigating the potential of early treatment with oral semaglutide. Methods: A cross-sectional survey was conducted between October 2021 and April 2022 among specialists treating individuals with T2D. A scientific committee designed a data collection form covering demographics, cardiovascular risk, glucose control metrics, ongoing therapies, and physician judgments on treatment appropriateness. Participants completed anonymous patient questionnaires reflecting routine clinical encounters. The preferred therapeutic regimen for each patient was also identified. Results: The analysis was conducted on 4449 patients initiating oral semaglutide. The population had a relatively short disease duration (42%  60% of patients, and more often than sitagliptin or empagliflozin. Conclusion: The study supports the potential of early implementation of oral semaglutide as a strategy to overcome therapeutic inertia and enhance T2D management

    Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign

    Get PDF
    Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p < .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p < .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come
    corecore