467 research outputs found
Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission
A photonic integrated circuit for mode multiplexing and demultiplexing in a
few-mode fiber is presented and demonstrated. Two 10 Gbit/s channels at the
same wavelength and polarization are simultaneously transmitted over modes LP01
and LP11a of a few-mode fiber exploiting the integrated mode MUX and DEMUX. The
proposed Indium-Phosphide-based circuits have a good coupling efficiency with
fiber modes with mode-dependant loss smaller than 1 dB. Measured mode
excitation cross-talk is as low as -20 dB and a channel cross-talk after
propagation and demultiplexing of -15 dB is achieved. An operational bandwidth
of the full transmission system of at least 10 nm is demonstrated. Both mode
MUX and DEMUX are fully reconfigurable and allow a dynamic switch of channel
routing in the transmission system
Non-invasive monitoring and control in silicon photonics by CMOS integrated electronics
As photonics breaks away from today's device level toward large scale of
integration and complex systems-on-a-chip, concepts like monitoring, control
and stabilization of photonic integrated circuits emerge as new paradigms.
Here, we show non-invasive monitoring and feedback control of high quality
factor silicon photonics resonators assisted by a transparent light detector
directly integrated inside the cavity. Control operations are entirely managed
by a CMOS microelectronic circuit, hosting many parallel electronic read-out
channels, that is bridged to the silicon photonics chip. Advanced
functionalities, such as wavelength tuning, locking, labeling and swapping are
demonstrated. The non-invasive nature of the transparent monitor and the
scalability of the CMOS read-out system offer a viable solution for the control
of arbitrarily reconfigurable photonic integrated circuits aggregating many
components on a single chip
On-Chip OSNR Monitoring with Silicon Photonics Transparent Detector
Non-invasive integrated detectors, named contactless integrated photonic probe (CLIPP), are employed to demonstrate on-chip noise-independent power monitoring of optical channels and in-band optical signal to noise ratio (OSNR) measurement. The proposed technique is based on a two-step lock-in demodulation of optical signals that are suitably labeled with low-modulation-index labels. We demonstrate OSNR measurement from 8 up to 27 dB/0.1 nm on 10-Gb/s ON-OFF keying signals with a power level ranging from -25 up to -15 dBm. This approach provides a promising tool for the monitoring of channels in reconfigurable optical networks with flexible channel allocation strategy, where the small channel separation makes the measurement of the in-band OSNR challenging
Automated routing and control of silicon photonic switch fabrics
Automatic reconfiguration and feedback controlled routing is demonstrated in an 8×8 silicon photonic switch fabric based on Mach-Zehnder interferometers. The use of non-invasive Contactless Integrated Photonic Probes (CLIPPs) enables real-time monitoring of the state of each switching element individually. Local monitoring provides direct information on the routing path, allowing an easy sequential tuning and feedback controlled stabilization of the individual switching elements, thus making the switch fabric robust against thermal crosstalk, even in the absence of a cooling system for the silicon chip. Up to 24 CLIPPs are interrogated by a multichannel integrated ASIC wire-bonded to the photonic chip. Optical routing is demonstrated on simultaneous WDM input signals that are labelled directly on-chip by suitable pilot tones without affecting the quality of the signals. Neither preliminary circuit calibration nor lookup tables are required, being the proposed control scheme inherently insensible to channels power fluctuations
Stochastic simulation and robust design optimization of integrated photonic filters
Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.MIT Skoltech InitiativeProgetto Roberto Rocca (Seed Funds)National Science Foundation (U.S.) (AIM Photonics Center. Contract 1227020-EEC)Semiconductor Research Corporatio
Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics?
A novel class of optical waveguides with a box-shaped cross section consisting of a low-index inner material surrounded by a thin high-index coating layer is presented. This original multilayered structure widens the traditional concept of index contrast for dielectric waveguides toward a more general concept of effective index contrast, which can be artificially tailored over a continuous range by properly choosing the thickness of the outer high-index layers. An electromagnetic analysis is reported, which shows that the transverse electric and transverse magnetic modes are spatially confined in different regions of the cross section and exhibit an almost 90degC rotational symmetry. Such unusual field distribution is demonstrated to open the way to new intriguing properties with respect to conventional waveguides. Design criteria are provided into details, which mainly focus on the polarization dependence of the waveguide on geometrical parameters. The possibility of achieving single-mode waveguides with either zero or high birefringence is discussed, and the bending capabilities are compared to conventional waveguides. The feasibility of the proposed waveguide is demonstrated by the realization of prototypal samples that are fabricated by using the emerging CMOS- compatible Si3N4-SiO2 TriPleX technology. An exhaustive experimental characterization is reported, which shows propagation loss as low as state-of-the-art low-index-contrast waveguides (< 0.1 dB/cm) together with enhanced flexibility in the optimization of polarization sensitivity and confirms the high potentialities of the proposed waveguides for large-scale integrated optics
- …
