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Abstract: Manufacturing variations are becoming an 
unavoidable issue in modern fabrication processes; there-
fore, it is crucial to be able to include stochastic uncertain-
ties in the design phase. In this paper, integrated photonic 
coupled ring resonator filters are considered as an exam-
ple of significant interest. The sparsity structure in pho-
tonic circuits is exploited to construct a sparse combined 
generalized polynomial chaos model, which is then used 
to analyze related statistics and perform robust design 
optimization. Simulation results show that the optimized 
circuits are more robust to fabrication process variations 
and achieve a reduction of 11%–35% in the mean square 
errors of the 3  dB bandwidth compared to unoptimized 
nominal designs.

Keywords: design optimization; generalized polynomial 
chaos; process variations; photonic integrated circuits; 
yield; coupled ring resonator filters.

1  Introduction
Photonics is rapidly emerging as a mature and promising 
technology, and it is evolving from a pure research topic to 
a market-ready player, aiming at achieving large produc-
tion volumes and small fabrication costs. Pushed by these 
motivations, process design kits (PDKs), circuit simula-
tors, generic foundry approaches, and multiproject wafer 

runs are quickly changing the way that photonic circuits 
are conceived and designed [1–4].

On the contrary, stochastic uncertainties related to fab-
rication variations, such as waveguide geometry deviation, 
gap opening issues, material composition fluctuations, 
and surface roughness, are unavoidable in production pro-
cesses [5–9]. It is well known that such uncertainties can 
have a dramatic impact on the functionality of fabricated 
circuits [4, 10–15]. To obtain a high-quality design of a pho-
tonic circuit (e.g. high yield or smaller performance varia-
bility), it is important to include such uncertainties during 
the early design stages. Hence, uncertainty quantification 
techniques become fundamental instruments to efficiently 
obtain the statistical information of the circuits as well as 
to achieve a high-quality design.

Monte Carlo is an approach commonly exploited to 
evaluate the impact of fabrication uncertainties on the 
functionality of the designed circuits [12]. Although effec-
tive, it suffers from a slow convergence rate and requires 
long computation time. Meanwhile, stochastic spectral 
methods have recently been regarded as a promising 
alternative for statistical analysis due to their fast conver-
gence. The key idea is to approximate the output quantity 
of interest (e.g. the power consumed by the circuit or the 
bandwidth of a filter) with a set of orthonormal polyno-
mial basis functions, known as generalized polynomial 
chaos (gPC) expansion. There are two classes of method to 
compute the coefficients of the basis functions, and each 
class has its own pros and cons. For intrusive methods 
(i.e. nonsampling methods) such as stochastic Galerkin 
[16] and stochastic testing [17], the computation cost is 
sometimes lower but it requires modifying the internal 
code of an existing deterministic solver. Conversely, non-
intrusive methods (i.e. sample-based methods), including 
stochastic collocation [18] and least-squares regression 
techniques, use the deterministic solvers as a black box, 
which is often more convenient in practice. In addition, 
if the problem at hand happens to be inherently sparse, a 
sparse gPC model can be constructed by minimizing the 
ℓ1 norm of the gPC coefficients [19–21] or using a tensor 
recovery model with low-rank and sparse constraints [22].
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When performing design optimization based on gPC 
models, one approach is to use evolution algorithms such 
as genetic algorithm, which optimizes circuit performance 
under both uncertainties and design constraints with the 
obtained gPC surrogate models [23–26]. The cost functions 
are usually expected values and/or variance (and/or their 
combinations) of the quantity of interests. However, that 
approach must regenerate gPC models for every design 
point inside the optimization loop because an analyti-
cal cost function is unavailable. On the contrary, a com-
bined gPC model is proposed in [27, 28] to expand the 
cost function in terms of both process variation variables 
and design variables. In that approach, the cost function 
can be expressed in terms of design variables; therefore, 
gradient-based optimization algorithms can be applied. In 
particular, the cost function is a multivariate polynomial 
because the gPC bases are polynomials; hence, a global 
polynomial optimization solver, such as gloptipoly3 [29], 
can be employed. It is shown in [29] that the optimizer will 
provide certificates once a global optimum is found.

In this work, we exploit the sparsity structure present 
in photonic circuits and construct a sparse combined 
gPC model to analyze their related statistics and perform 
design optimization. Section 2 briefly reviews some back-
ground material on gPC and techniques for building a 
combined gPC model. The idea of constructing a sparse 
gPC model for design optimization is illustrated in Section 
3, and a real-world photonic coupled ring resonator filter 
circuit example is simulated and demonstrated to prove 
the effectiveness of the method in Section 4. Finally, con-
clusions are summarized in Section 5.

2  Background review
In this section, a brief background review of gPC is first 
given, and the idea of using gPC models in design optimi-
zation is described afterwards.

2.1  gPC model

Let ( , )u x ξ
��  be a quantity of interest of a device/circuit/

system under process variations, for example, the band-
width of filter, the quality factor or resonant wavelength of 
a resonator, and the effective phase index of a waveguide. 
The vector x�  denotes a set of constant design variables, 
such as the gap of a directional coupler, the nominal radius 
of a ring resonator, or the nominal width of a waveguide, 
and ξ

�
 is a random vector describing fabrication process 

variations, such as the variations of the gap, the radius, 

and the width. Given the joint probability density function 
(pdf) of ,ξ

�
 the idea of gPC is to approximate ( , )u x ξ

��  by a 
set of specialized basis functions:

	
( , ) ( ) ( )u x C x

α α
α

ξ Ψ ξ≈∑ � �
�

� �� �

�
(1)

where ( )
α

Ψ ξ�
�

 is a multivariate polynomial and ( )C x
α
�
�  is the 

corresponding coefficient with nonnegative integer multi-
index 1( , , ).dα α α=

�
�  Assuming all components of ξ

�
 are 

independent to each other, the joint pdf p
ξ
�  is a product 

of one-dimensional pdf ,
i

p
ξ

 and ( )
α

Ψ ξ�
�

 is a product of 
univariate polynomials ( ).

i iα
ξψ  For some well-known 

distribution, such as uniform, Gaussian, β, and γ distribu-
tion, the corresponding bases are also known, and they 
are Legendre, Hermite, Jacobi, and Laguerre polynomial, 
respectively. For more details, readers are referred to [18].

If a total-order truncation of α
�  with order p is used, 

α
�  satisfies

1 d pα α+ + ≤�

and there are total ( )!
! !

d pN
p d
+=  terms in (1). The multi-

indices can be mapped into a set of integers from 1 to N, so 
(1) can be rewritten as

1
( , ) ( ) ( ).

N

n n
n

u x c xξ Ψ ξ
=

≈∑
� �� �

The coefficients C
α
�  can be obtained either intrusively 

by stochastic Galerkin method or sample-based method 
such as stochastic collocation method and regression 
method.

2.2  Design optimization with gPC models

It is of high interest to design a device or circuit that can 
still perform well under process variations. In other words, 
the robustness of its performance is of primary concern, 
because fabrication variations are often unavoidable in 
reality. The goal is to optimize the quantity of interest (or 
a function of the quantity of interest) under uncertainties 
and design constraints. Because the quantity of interest is 
a random variable, it is reasonable to use its expectation 
or its associated function as the objective in the optimiza-
tion problem. A common form of the design optimization 
problem is the following:

	

minimize [ ( , )] and/or [ ( , )]
subject to , 1, , ,

x

i i i

u x u x
a x b i m

ξ ξ
ξ ξ

≤ ≤ = …
�

� �� �E V

�
(2)

where ( , )u x ξ
��  is the quantity of interest. The expectation 

and variance of u over ξ
�

 are known to be
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	 0[ ( , )] ( )u x C x
ξ

ξ = �
�� �E � (3)

and

	
2

0
[ ( , )] ( ),u x C x

ξ α
α

ξ
≠

=∑ �
��

�� �V
�

(4)

assuming x�  is a constant vector and that the basis func-
tions ( )

α
Ψ ξ�
�

 are orthonormal.
If (3) and (4) are used to solve the optimization problem 

(2), then ( , )u x ξ
��  has to be reexpanded each time for each 

design point x�  inside the optimization loop, which is 
time consuming and only non-gradient-based optimiza-
tion algorithm such as evolutionary genetic algorithm can 
be used to search for the optimum. However, genetic algo-
rithm is a heuristic-based method, and it does not guar-
antee local and global optima, although it is often used 
as a tool to try to find a global optimum in practice. Alter-
natively, if ( , )u x ξ

��  can be expanded both on x�  and ,ξ
�

 
then (3) and (4) will be analytical functions of ;x�  hence, 
gradient-based optimizers can be employed. Notice that 
the constraints of xi in (2) are boxed constraints, which is 
equal to express xi as uniformly distributed variables in 
the interval [ai, bi]. Therefore, rewrite ( , )u x ξ

��  as

,
,

( , ) ( , )

( ) ( )
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C x
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α

γβ γ β
β γ

ξ Ψ ξ

Φ ξ

≈

=

∑
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where 
β
�L  is a multivariate Legendre polynomial with 

multi-index ,β
�

 Φ is a multivariate polynomial of ξ
�

 with 
multi-index ,γ

�  and ( , ).α β γ=
�� �  ( , )u x ξ

��  is now referred to 
the combined gPC model. Using the combined gPC model, 
we have

,
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,
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Therefore, we have
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Similarly, using the orthogonality of basis functions
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we have
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3  Our proposed method
We propose to exploit both the idea of sparse gPC model [21] 
and the combined gPC model [27, 28] to construct a sparse 
combined gPC model for the quantity of interests in photon-
ics applications. Specifically, our example circuit is a five-
ring coupled resonator filter, and the quantity of interest is 
the 3 dB bandwidth. The combined gPC model is an effi-
cient way to perform design optimization; however, if the 
number of parameters (i.e. x�  and ξ

�
) is more than 10 (there 

are a total of 17 parameters in our photonics example), using 
stochastic collocation to compute gPC coefficients is very 
costly. On the contrary, the coefficients of the sparse gPC 
model can be computed efficiently by solving an ℓ1 mini-
mization with the off-the-shelf ℓ1 minimization solver, such 
as spgl1 [30]. With several hundreds of parameters, spgl1 
can give a solution in minutes. In addition, the number of 
terms of the cost function in (2) is smaller by exploiting the 
sparsity of the gPC expansion, which can help saving some 
evaluation time during optimization process.

3.1  Sparse combined gPC model

Our sparse combined gPC model is constructed as follows:

1
BW( , ) ( , ),

N

n n
n

x c xξ Ψ ξ
=

≈∑
� �� �

where we compute the coefficients cn by solving the 
following problem:

	
1 2min ,   subject to   BW ,c cΨ δ∗− ≤
� �
� � � � � (7)

where 1( , , )Nc c c=
�

�  is a vector of all coefficients, Ψ is the 
measurement matrix whose (i, j) entry is the jth basis with 
ith sample ( ) ( )( , ),i i

j xΨ ξ
��  BW* = (BW(1), …, BW(M)) is a vector 

of M output samples obtained from Monte Carlo simula-
tion, and δ is a bound on the data error, which is usually 
estimated from cross-validation data.

3.2  �Robust design optimization under 
process variations

In our example, we would like the bandwidth to be as 
robust as possible to the fabrication variations. In other 
words, we would like to minimize the expected mean 
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square error (MSE) of the bandwidth with respect to the 
original designed bandwidth (which is also called nominal 
bandwidth BW0 in this paper). The analytical expression 
of the expected MSE is

	

2
0

2
0

MSE( ) [(BW( , ) BW ) ]
[BW( , )] ( [BW( , )] BW ) ,

x x
x x

ξ

ξ ξ

ξ

ξ ξ

= −
= + −

�� �
� �� �

E
V E �

(8)

where the mean and variance are shown to be a multivari-
ate polynomial in (5) and (6), respectively.

Thus, the robust design optimization that we will be 
solving is the following:

	

minimize MSE( )
subject to , 1, , ,

x

i i i

x
a x b i m≤ ≤ = …

�
�

�
(9)

Because the objective function MSE is a multivariate poly-
nomial, we can obtain the global optimum of a polynomial 
optimization problem by solving generalized problems of 
moments [29, 31], which is an additional benefit of using 
the combined gPC model in the design optimization 
problem. Figure 1 summarizes the design flow of the pro-
posed technique. Note that we use BW to denote the quan-
tity of interest (3 dB bandwidth) here to be consistent with 
our example in the next section, but it can be any other 
quantity based on different applications.
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Figure 2: (A) The example circuit is a five-ring coupled resonator 
filter. (B) Transfer functions of the drop port (red bold solid line) and 
through port (blue bold dashed line) of the Chebyshev filter nominal 
design. Gray thin lines plot 100 Monte Carlo simulations of the 
transfer functions when fabrication variations exist on the effective 
index of each ring and gap width of each directional coupler. The 
variations of the effective phase indices and the gaps are assumed 
to be zero-mean Gaussian distribution with standard deviation 
σneff = 10-5 and σg = 5 × 10-3 μm, respectively.Figure 1: Proposed robust design optimization flow.

4  �Example of integrated photonic 
filters

4.1  Benchmark description

To demonstrate the application of our approach, a fifth-
order directly coupled ring resonator filter is used as a test 
case, and its schematic is shown in Figure 2A, where neff,i 
denotes the effective phase index of each ring and gi is 
the gap width of each directional coupler. Two “nominal 
designs” of the filter are obtained with standard synthesis 
techniques described in [32, 33].

The first design is a Chebyshev type I filter (equi-rip-
ple bandpass response) with in-band isolation of 26 dB at 
the through port. The coupling coefficients of the direc-
tional couplers are

1,0 6,0

2,0 5,0

3,0 4,0

0.337,
0.024,
0.012.

C C

C C

C C

K K
K K
K K

= =
= =
= =
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The filter has a 3  dB passband bandwidth 
BW0 = 25.6 GHz. The design and transfer functions of the 
filters were calculated with a commercial circuit simula-
tor [34]. The transmission of Chebyshev nominal design is 
shown in Figure 2B, where the red bold solid line is for drop 
port and the blue dash line is for through port. The second 
design is a Butterworth filter (maximally flat passband 
response) with the same 3 dB bandwidth BW0 = 25.6 GHz. 
The corresponding coupling coefficients are

1,0 6,0

2,0 5,0

3,0 4,0

0.490,
0.042,
0.013,

B B

B B

B B

K K
K K
K K

= =
= =
= =

with an in-band isolation larger than 50 dB. For both 
designs, all the rings have the same length of 336.2 μm, 
the gaps gi are 0.3 μm, and the effective phase indices 
neff,i are 2.23. The free spectral range is 400 GHz. Without 
loss of generality, dispersion and waveguide attenuation 
are neglected. Although these results already represent 
optimum filter designs, they do not take into account the 
unavoidable process variations affecting real fabricated 
circuits. Therefore, our goal is to include such variations 
during the design phase. To this purpose, the effective 
indices and gaps are written as the sum of nominal values 
(neff,0, g0,i) and variations (Δneff,i, Δgi) respectively:

eff , eff ,0 eff ,

0,

,
.

i i

i i i

n n n
g g g

∆

∆

= +
= +

The variables Δneff,i and Δgi are denoted as process 
variation variables in the combined gPC model, and they 
are assumed to be Gaussian distributed with zero mean 
and standard deviation σneff and σg, respectively. On the 
contrary, g0,i are denoted as design variables, which lie 
uniformly in an interval with lower bound glb and upper 
bound gub. All the process variation variables and design 
variables are assumed to be independent.

Note that, when we refer to “nominal design” in this 
paper, we mean that it is the design obtained without 
fabrication variations. Hence, the two nominal designs 
described earlier have neff,0 = 2.23, g0,i = 0.3 μm, Δneff,i = 0, 
Δgi = 0. When a nominal design is exposed to process vari-
ations, we will explicitly describe it as “nominal design 
with fabrication variations”. Such variations could heavily 
affect the function of the circuit, as shown in Figure 2B. 
The thin gray lines in Figure 2B plot the effect of fabrica-
tion uncertainties on the Chebyshev nominal design con-
sidering Δneff,i, Δgi≠0, σneff = 10-5, and σg = 5 × 10-3. It is clearly 
seen that the transfer function of the original nominal 
design (bold lines) is heavily distorted. The 3 dB passband 

as well as the in-band isolation have large fluctuation even 
under relatively small process variations. Hence, our goal 
is to find the best nominal design whose performance is 
the most robust to the process variations by exploiting the 
approach described in Section 2. Specifically, our target is 
to find the best gap widths g0,i, which minimize the fluctu-
ation of 3 dB bandwidth in the two nominal designs with 
process variations. The gaps values are constrained with 
some specified lower bound glb and upper bound gub.

4.2  Simulation results and discussion

In this section, we describe the simulation procedures and 
results in detail. The whole design flow is summarized in 
Figure 1, and all simulations are performed on an Intel 
i5-5200 CPU laptop with 8 GB of RAM.

The quantity of interest is the filter’s 3 dB bandwidth 
BW ( , ).x ξ

��  The design variables are 0 0,1 0,6( , , ),x g g g= =
��

�  
and the (zero-mean Gaussian distributed) process vari-
ation variables are 1 6 eff,1 eff,5( , , , , , ),g g n nξ ∆ ∆ ∆ ∆=

�
� �  

where σneff,i = 10-5 and σg,i = 5 nm. For both Chebyshev and 
Butterworth nominal designs, we simulate two sets of 
design variables with different lower bound (ai, denoted 
as glb here) and upper bound (bi, denoted as gub here), 
where (glb, gub) = (0.29, 0.31) and (0.27, 0.33) μm, respec-
tively. The simulation parameters of cases (A–D) are sum-
marized in Table 1. Note that the lower and upper bounds 
can be, in principle, set differently for each gap, but here 
they are set to have the same bounds for convenience. Due 
to space limit, only figures of case A [Chebyshev type, (glb, 
gub) = (0.29, 0.31) μm] will be shown in this paper, but all 
the related statistics are listed in Tables 1 and 2.

The first step is to generate two batches of 5000 
Monte Carlo samples with the same fabrication uncertain-
ties, denoted as “training samples” and “test samples”, 
respectively. Usually 1000 to 5000 samples is a good 
choice of the training data size. The “training samples” 
are then used to construct a sparse combined gPC model 
with total order p = 2 using the spgl1 solver [30, 35] in the 
second step, and the “test samples” are used to verify the 
capability of the constructed gPC model. The simulated 
bandwidth pdfs of Monte Carlo samples and gPC model 
are plotted in Figure  3, showing that the combined gPC 
model is a good surrogate. Figure 4 plots the bandwidth 
pdfs of the combined gPC model with fixed design vari-
ables 0,g�  which are randomly selected for the purpose 
to test the capability of the model. It shows that the com-
bined gPC model can indeed capture accurate statistical 
information for different design variables and hence can 
be used as a surrogate in the optimization process.
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Table 2: MSEs of unoptimized nominal design and optimized nominal design under process variations in cases A to D. Each trial has 5000 
independent Monte Carlo samples.

 
 

Trial 1  
 

Trial 2  
 

Trial 3

MSE (nominal)   MSE (optimized)   I (%) MSE (nominal)   MSE (optimized)   I (%) MSE (nominal)   MSE (optimized)   I (%)

Case A   0.447   0.402   11.22   0.448   0.403   11.07   0.454   0.406   11.62
Case B   0.447   0.334   33.98   0.448   0.337   32.80   0.454   0.336   35.18
Case C   0.625   0.530   17.83   0.616   0.527   16.83   0.628   0.530   18.46
Case D  0.625   0.512   21.12   0.616   0.509   20.96   0.628   0.502   25.13
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Figure 3: 3 dB bandwidth pdfs of the combined gPC model with 
(A) Monte Carlo training samples and (B) Monte Carlo test samples.

Table 1: Four simulated cases and the associated optimized gaps.

  Filter type   (glb, gub) (μm)  
�
optg  (μm)

Case A   Chebyshev   (0.29, 0.31)   (0.3100; 0.3100; 0.3035; 0.2978; 0.3100; 0.3100)
Case B   Chebyshev   (0.27, 0.33)   (0.3054; 0.3300; 0.2858; 0.3014; 0.3300; 0.3300)
Case C   Butterworth  (0.29, 0.31)   (0.2900; 0.3100; 0.2947; 0.2931; 0.3100; 0.2900)
Case D  Butterworth  (0.27, 0.33)   (0.2700; 0.2893; 0.3132; 0.2700; 0.3114; 0.2700)
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Figure 4: 3 dB bandwidth pdfs of Monte Carlo samples 
and combined gPC model at given �0g  in case A: (A) 

=
�

0 (0.2915, 0.3046, 0.3096, 0.3020, 0.3050, 0.3028)g  μm  
and (B)  =

�
0 (0.295, 0.305, 0.3, 0.305, 0.3, 0.295)g  μm.

Our goal is to find the best design whose 3 dB band-
width is the most robust to (given) process variations. In 
other words, we try to minimize the MSE of the bandwidth 
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with respect to the nominal bandwidth value (BW0 =  
25.6 GHz), and the analytic form of MSE is in Eq. (8). 
Therefore, we compute MSE in step 3 and then use both 
the global polynomial optimizer (gloptiPoly3 [29]) and 
the Matlab global optimization toolbox to solve for global 
optimum in step 4, as illustrated in Figure 1. The converged 
solutions for cases A to D are the same with the two solvers 
and are summarized in Table 1. For all the cases, the con-
struction time of a gPC combined model with design opti-
mization is  < 15 min (using gloptiPoly3) and 30 min (using 
Matlab global optimization toolbox).

To verify that a better nominal design is indeed 
achieved (i.e. its bandwidth is more robust to process 
variations), we simulate the 3  dB bandwidth of the 
circuit under process variations with new 5000 Monte 
Carlo samples for both optimized gaps optg�  and nominal 
gaps .nomg�  The test is performed independently three 
times, and the corresponding MSEs are summarized in 
Table  2. It is clearly seen that the circuit with optg�  has 
smaller MSEs among all the simulated cases. Column 
I denotes the relative improvement for the optimized 
design, defined as I = [MSE(nom)-MSE(opt)]/MSE(opt). 
For case A, the improvement is about 11% in average, 
whereas case B achieves a larger improvement of about 
32.8%–35.2%. Cases A and B are the same filter design 
(Chebyshev filter), but case B has a larger gap range. 
This indicates that a better optimum is found in the 
range considered in case B. The improvement of case C is 
between 16.8% and 18.5% (larger than Chebyshev filter 
case A), whereas the MSE improvement in case D (larger 
gap range) is slightly higher than case C (between 21% 
and 25.1%) and is smaller compared to the Chebyshev 
filter (case B).

To visualize the improvement of MSEs, Figure 5 plots 
the bandwidth pdfs of unoptimized nominal design and 
optimized design in case A with Trial 1 MC samples. It is 
shown that the average bandwidth of the unoptimized 
nominal design is equal to BW0 = 25.6 GHz, whereas 
the average bandwidth of the optimized case is about 
25.45 GHz. In addition, the pdf of the optimized design is 
less dispersed around BW0. As a result, the MSE improves 
from about 0.44 (unoptimized nominal design) to 0.40 
(optimized design). Note that, although Figures 3–5 all 
plot the pdfs of bandwidth, they have different meanings. 
Figure 3 plots the bandwidth pdf where 0 eff ,0( , , )g g n∆

�� �  are 
all varying, whereas Figure 4 refers to designs under fabri-
cation variations with 0g

�
 specified in the caption. Figure 

5 also plots the designs under fabrication variations, but 
0g
�  are nominal gaps ( 0 (0.3, 0.3, 0.3, 0.3, 0.3, 0.3)g =

�  μm) 
and optimized gaps ( 0 optg g=

� �  in case A). Thus, it is natural 
that their pdfs are all different.
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Figure 5: 3 dB bandwidth pdfs of the unoptimized nominal design 
(nominal gaps =

�
0 (0.3, 0.3, 0.3, 0.3, 0.3, 0.3)g  μm) and optimized 

nominal design (optimized gaps =
� �

0 optg g ) with process variations in 
case A.
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Figure 6: Transfer functions of unoptimized nominal design and 
optimized design at the through ports and drop ports in case A.

It is interesting to notice that improved bandwidth 
robustness to fabrication uncertainties comes at the 
expense of a larger reduction of the average in-band iso-
lation of the filter. Figure 6 plots through-port and drop-
port transfer functions of the best (optimized) design in 
red solid line and the original (unoptimized) nominal 
design in blue dashed line of case A. It is seen that, for 
the optimized design, in-band isolation is reduced about 
10 dB. This behavior is expected because no constraints 
were placed on the in-band isolation in the optimization 
problem (9); hence, its value in the optimized design is 
not under control. For this reason, there exists a trade-
off between improvement in the MSE of bandwidth and 
reduction of the in-band isolation with respect to the 
nominal filter, which represents the optimum solution in 
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the ideal situation (without uncertainties), guaranteeing 
simultaneously the required bandwidth and the best iso-
lation. In our tests, we observed that in case B the isolation 
of optimized design is about 20  dB lower than nominal 
design, and the same phenomenon is observed also for 
cases C and D. This could be improved, for example, 
requiring in problem (9) the optimized solution to ensure 
also a minimum value of the isolation as an additional 
constraint.

4.3  Further discussion on MSEs and yield

In Section 4.2, it has been demonstrated that the optimized 
designs are more robust compared to the unoptimized 
nominal design under fabrication process variations, 
where σneff,i = 10-5 and σg,i = 5 nm for all four cases. In princi-
ple, similar results will be obtained (i.e. optimized designs 
will outperform the unoptimized nominal design) for dif-
ferent fabrication variations. However, it is interesting to 
know the capability of the optimized solutions (solved 
under σneff,i = 10-5 and σg,i = 5 nm) when the fabrication vari-
ations change (σneff,i≠10-5 and σg,i≠5 nm). This situation is 
common during real circuit fabrications because the exact 
uncertainties of the fabrication processes are difficult to 
predict and may change with time. Of course, if the statis-
tics of fabrication variations are precisely known, then we 
can always solve (9) to get the optimized design under that 
fabrication variations as done in Section 4.2.

To perform this test, we calculate the MSE of the 
nominal design and the case A optimized design under 
process variations by Monte Carlo simulations, where σneff,i 
is varied from 0.5 × 10-5 to 1.5 × 10-5 and σg,i varied from 1 to 
10 nm. The MSE improvement I is reported in Figure 7A. 
The blue cross in the figure marks the number σneff,i = 10-5, 
σg,i = 5  nm used in case A, which has I11%. It can be 
seen that the curves of σneff,i = 0.5 × 10-5 and σneff,i = 1.5 × 10-5 
are close to the design case A (σneff,i = 10-5), meaning that 
a change of the effective index variation from 0.5 × 10-5 to 
1.5 × 10-5 has a very small impact on the performance in 
this example. This is expected because the optical length 
of the rings has a minor impact on the filter bandwidth at 
least in the ideal case [33].

A better performance of the optimized solution of 
case A is also observed when gap variation increases 
(σg,i > 5 nm) even if the optimized solution here is obtained 
under the condition σg,i = 5 nm. The MSE improvement is 
almost constant at about 11% to 12%. On the contrary, the 
MSE improvement quickly drops when the gap variation 
becomes smaller and even negative when σg,i < 2 nm. This 
can be explained by the fact that the optimized solution of 
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Figure 7: (A) MSE improvement for the optimized design of case A 
as a function of the σg,i and σneff,i, where the process variations on 
the gaps and effective phase indices are assumed to be Gaussian 
distributed with zero mean and standard deviation σg,i and σneff,i, 
respectively. The blue cross represents the MSE improvement for 
σg,i and σneff,i used in case A. (B) Yield increment of the optimized 
designs in cases A–D as a function of M, where 2M is the width of 
the bandwidth acceptance interval [BW0-M, BW0+M].

case A has an average bandwidth slightly different from 
BW0 (90 MHz). When the dispersion of the bandwidth pdf 
decreases due to the reduction of gap variations, its mean 
value becomes predominant in determining the MSE 
(i.e. E[(BW-BW0)2]). Because the mean bandwidth for the 
unoptimized nominal design is equal to BW0, its MSE is 
almost zero for very small values of σg,i. On the contrary, 
when σg,i increases, the MSE is mainly determined by the 
dispersion of the 3  dB bandwidth, which is smaller for 
the optimized solution. At about σg,i = 2 nm, the two effects 
compensate and the nominal and optimized designs have 
the same performance with respect to the MSE. The above 
simulation shows that the optimized solution of case A 
(optimized under gap variation σg,i = 5 nm) is still effective 
with gap variation σg,i > 3 nm; however, a new optimized 
solution should be computed for smaller gap variation 
(σg,i < 3 nm) to effectively reduce MSEs.
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In addition to the MSEs, the yield of a circuit is also a 
critical index that we would like to observe under process 
variations. We define a bandwidth acceptance interval 
[BW0-M, BW0+M] as the maximum deviation from the 
nominal bandwidth (BW0 = 25.6 GHz), and the yield is cal-
culated as the integral of the bandwidth pdf in this inter-
val. Because the whole integral of a pdf should be 1, it is 
obvious that the yield is a number between 0 (i.e. M = 0) 
and 1 (i.e. when M goes to infinite). The higher the yield is, 
the larger is the number of fabricated filters that meet the 
specifications.

Figure 7B plots the yield increment (in percentage) for 
the optimized design compared to the unoptimized nominal 
design under process variations as a function of the band-
width acceptance M. For all acceptance intervals, opti-
mized designs outperform unoptimized nominal designs 
in all four cases. When M is near 0 or larger than 2 GHz, 
the increment is very small because the yield for both opti-
mized and unoptimized designs approaches 0 and 100%, 
respectively. On the contrary, when M is between 0.5 and 
1 GHz, the maximum increment is observed. The maximum 
yield increment is about 3.1% (case A, MSE improvement 
11%, solid blue line) to 7.3% (case B, MSE improvement 
35%, dashed red line). As a clearer visualization of case 
B, the inset of Figure 7B also plots the yield with respect 
to M from 0.5 to 1.5 GHz. Case C (dotted black line) has a 
maximum yield increment similar to case A, whereas case 
D (dot-dashed magenta line) is about 5.2%.

5  Conclusions
In this paper, we have proposed to construct a sparse 
combined gPC model for a target performance parameter 
in photonic circuits. Our sparse model can help solve effi-
ciently a design optimization involving such performance 
parameter. Specifically, we have applied our methodology 
to a five-ring coupled resonator filter and designed the 
gaps so that the 3 dB bandwidth of the optimized designs 
is more robust to fabrication process variations. The band-
width MSEs are reduced 11%–35% compared to unopti-
mized designs, proving the effectiveness of the technique. 
The yields of the optimized designs are also shown to be 
higher as an additional benefit.
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