900 research outputs found

    X-ray and light scattering from nanostructured thin films

    Get PDF
    The object of this thesis is the study of nanostructured thin films using inelastic fight scattering and elastic x-ray scattering techniques. Their use in combination with other techniques is a powerful tool for the investigation of nanostructured materials. X-ray, Raman and Brillouin characterisation of cluster-assembled carbon films, promising for applications in the field of catalysis, hydrogen storage and field emission, is here presented. X-ray reflectivity (XRR) provided a measure of the density. Raman spectroscopy showed that the local bonding in these amorphous films depends on the size distribution of the clusters and that it is possible to select the cluster size in order to grow films with tailored properties. Brillouin scattering provided a characterisation at the mesoscopic scale and an estimate of the elastic constants, revealing a very soft material. XRR was employed to study density, layering and roughness of a wide range of amorphous carbon films grown with different techniques. Some films possess an internal layering due to plasma instabilities in the deposition apparatus. By comparing XRR with Electron Energy Loss Spectroscopy, a unique value for the electron "effective mass" was deduced and a general relationship between sp(^3)-content and density was found. XRR and H effusion were used to determine the hydrogen content. A study of the size-dependent melting temperature in tin nanoparticle thin films was undertaken with a combined use of X-Ray Diffraction (XRD) and light scattering. A redshift in the position of a Rayleigh peak in the temperature-dependent Brillouin measurements was shown to be related to the melting of the nanoparticles and explained by an effective medium model. XRD also provided information on the low-level of stress in the particles. Low-frequency Raman scattering was used to study the behaviour of the acoustic modes of a single particle as a function of temperature

    Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    Get PDF
    Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds

    Enhancing Light Harvesting by Hierarchical Functionally Graded Transparent Conducting Al-doped ZnO Nano- and Mesoarchitectures

    Get PDF
    A functionally graded Al-doped ZnO structure is presented which combines conductivity, visible transparency and light scattering with mechanical flexibility. The nano and meso-architecture, constituted by a hierarchical, large surface area, mesoporous tree-like structure evolving in a compact layer, is synthesized at room temperature and is fully compatible with plastic substrates. Light trapping capability is demonstrated by showing up to 100% improvement of light absorption of a low bandgap polymer employed as the active layer.Comment: 21 pages, 6 figures, submitted to Solar Energy Materials and Solar Cell

    Photocatalytic activity of nanotubular TiO2films obtained by anodic oxidation: A comparison in gas and liquid phase

    Get PDF
    The availability of immobilized nanostructured photocatalysts is of great importance in the purification of both polluted air and liquids (e.g., industrial wastewaters). Metal-supported titanium dioxide films with nanotubular morphology and good photocatalytic efficiency in both environments can be produced by anodic oxidation, which avoids release of nanoscale materials in the environment. Here we evaluate the effect of different anodizing procedures on the photocatalytic activity of TiO2nanostructures in gas and liquid phases, in order to identify the most efficient and robust technique for the production of TiO2layers with different morphologies and high photocatalytic activity in both phases. Rhodamine B and toluene were used as model pollutants in the two media, respectively. It was found that the role of the anodizing electrolyte is particularly crucial, as it provides substantial differences in the oxide specific surface area: nanotubular structures show remarkably different activities, especially in gas phase degradation reactions, and within nanotubular structures, those produced by organic electrolytes lead to better photocatalytic activity in both conditions tested

    Solvent-dependent termination, size and stability in polyynes synthesis by laser ablation in liquids

    Get PDF
    In recent years there has been a growing interest in sp-carbon chains as possible novel nanostructures. An example of sp-carbon chains are the so-called polyynes, characterized by the alternation of single and triple bonds that can be synthesized by pulsed laser ablation in liquid (PLAL) of a graphite target. In this work, by exploiting different solvents in the PLAL process, e.g. water, acetonitrile, methanol, ethanol, and isopropanol, we systematically investigate the solvent role in polyyne formation and stability. The presence of methyland cyano-groups in the solutions influences the termination of polyynes, allowing to detect, in addition to hydrogen-capped polyynes up to HC22H, methyl-capped polyynes up to 18 carbon atoms (i.e. HCnCH3) and cyanopolyynes up to HC12CN. The assignment of each species was done by UV-Vis spectroscopy and supported by density functional theory simulations of vibronic spectra. In addition, surface-enhanced Raman spectroscopy allowed to observe differences, due to different terminations (hydrogen, methyl-and cyano group), in the shape and positions of the characteristic Raman bands of the size-selected polyynes. The evolution in time of each polyyne has been investigated evaluating the chromatographic peak area, and the effect of size, terminations and solvents on polyynes stability has been individuated.Comment: 13 pages, 5 figures. Supporting Information of this article is available in the end of this manuscrip
    corecore