39 research outputs found
Numerical Assessment of Similitude Parameters and Dimensional Analysis for Water Entry Problems
The prediction of impulsive loads deriving from the sudden impact of a solid body on the water surface is of fundamental importance for a wide range of engineering applications. The study of hull-slamming phenomena largely relies on laboratory scale experimental investigations and on simplified analytical models. The aim of this paper is to quantitatively assess the interplay between the relevant nondimensional parameters for the water entry of a two-dimensional body, evidencing the similitude conditions that allow the transition from scaled experiments to real size applications. This assessment is performed through the numerical study of the hydrodynamics induced by the water impact of a two-dimensional wedge. The fluid flow is considered incompressible. First of all numerical simulations are validated by comparison with experimental data from the literature and with the Wagner seminal theory. Afterwards, a thorough computational study is performed by systematically varying all the relevant parameters, such as the nondimensional entry velocity and acceleration. We conclude by evidencing some design prescriptions that should be adopted in order to facilitate the transition of laboratory scale experiments to real scale applications
Adhesion mechanisms of the contact interface of TiO2 nanoparticles in films and aggregates
Fundamental knowledge about the mechanisms of adhesion between oxide particles with diameters of few nanometers is impeded by the difficulties associated with direct measurements of contact forces at such a small size scale. Here we develop a strategy based on AFM force spectroscopy combined with all-atom molecular dynamics simulations to quantify and explain the nature of the contact forces between 10 nm small TiO2 nanoparticles. The method is based on the statistical analysis of the force peaks measured in repeated approaching/retracting loops of an AFM cantilever into a film of nanoparticle agglomerates and relies on the in-situ imaging of the film stretching behavior in an AFM/TEM setup. Sliding and rolling events first lead to local rearrangements in the film structure when subjected to tensile load, prior to its final rupture caused by the reversible detaching of individual nanoparticles. The associated contact force of about 2.5 nN is in quantitative agreement with the results of molecular dynamics simulations of the particle–particle detachment. We reveal that the contact forces are dominated by the structure of water layers adsorbed on the particles’ surfaces at ambient conditions. This leads to nonmonotonous force–displacement curves that can be explained only in part by classical capillary effects and highlights the importance of considering explicitly the molecular nature of the adsorbates
Electron Transport Properties of Single-Molecule-Bearing Multiple Redox Levels Studied by EC-STM/STS
Multielectron systems as possible components of molecular electronics devices are attracting compelling experimental and theoretical interest. Here we studied by electrochemical scanning tunneling techniques (EC-STMicroscopy and EC-STSpectroscopy) the electron transport properties of a redox molecule endowed with two redox levels, namely, the hydroquinone/quinone (H2Q/Q) couple. By forming self-assembled monolayers on Au(111) of oligo-phenylene-vinylene (OPV) derivatized H2Q/Q moieties, we were able to explore the features of the tunneling current/overpotential relation in the EC-STS setup. The behavior of the tunneling current sheds light onto the mechanism of electron transport involving the redox levels of the H2Q/Q redox pair coupled to tip and substrate electrodes
DNA-templated photoinduced silver deposition
We are presenting a photography-derived methodology to achieve the photoreduction of Ag+−DNA complexes. λ-Phage DNA was first loaded with silver ions, then irradiated with UV light at 254 nm. The DNA bases acted as light sensitizers, promoting the in situ reduction of Ag+ and the formation of metallic silver clusters. Three different approaches will illustrate this procedure, and silver nanoparticle chains will be grown along a DNA template in a rapid and specific way
An Electrochemical Scanning Tunneling Microscopy Study of 2-(6-Mercaptoalkyl)hydroquinone Molecules on Au(111)
The hydroquinone/benzoquinone redox couple involves the exchange of two electrons and two protons in its oxidation/reduction reaction in aqueous buffered solutions. In this work, we employed Electrochemical Scanning Tunneling Microscopy and Spectroscopy (EC-STM, EC-STS) to study the interfacial electron transfer properties of hydroquinone incorporated in a Self Assembled Monolayer on a Au(111) substrate. The exchange of electrons between the STM tip and the substrate is regulated by the redox levels of the sandwiched molecule and showed the presence of two regions of tunneling enhancement in the tunneling current/overvoltage relationship. The two regions can be attributed to the presence of two one-electron transfer processes whose equilibrium positions shift upon pH variations. This is the first time a redox molecule involving the exchange of both electrons and protons is studied by EC-STM and EC-STS. The hydroquinone/benzoquinone redox couple can be exploited to obtain an electrochemically or a pH gated transistor
Fine-Tuning Nanoparticle Size by Oligo(guanine)n Templated Synthesis of CdS: an AFM study
We are presenting a method for modulating the size of US nanoparticles by templating their formation with oligo(guanine)(n) oligomers where n varied from 5 to 20. The variation in template length resulted in observable changes in the size distribution of the US nanoparticles. Statistical analysis of AFM images showed a general trend whereby the US average height decreased for longer oligoG(n) and increased for shorter oligoG(n). Concomitantly, shorter oligoG(n). yielded more dispersed populations, while longer oligoGn gave less dispersed populations. This synthetic methodology could be extended to the synthesis of other nanoparticles and even to mixed-metal nanoparticles resulting in a powerful method for fine-tuning size-dependent properties