46,389 research outputs found

    Dissipative lateral walls are sufficient to trigger convection in vibrated granular gases

    Full text link
    Buoyancy-driven (thermal) convection in dilute granular media, fluidized by a vibrating base, is known to appear without the need of lateral boundaries in a restricted region of parameters (inelasticity, gravity, intensity of energy injection). We have recently discovered a second buoyancy-driven convection effect which occurs at any value of the parameters, provided that the impact of particles with the lateral walls is inelastic (Pontuale et al., Phys. Rev. Lett. 117, 098006 (2016)). It is understood that this novel convection effect is strictly correlated to the existence of perpendicular energy fluxes: a vertical one, induced by both bulk and wall inelasticity, and a horizontal one, induced only by dissipation at the walls. Here we first review those previous results, and then present new experimental and numerical data concerning the variations of box geometry, intensity of energy injection, number of particles and width of the box.Comment: 4 pages, 4 figures, conference Powders and Grains 201

    Uncertainty Quantification for Linear Hyperbolic Equations with Stochastic Process or Random Field Coefficients

    Get PDF
    In this paper hyperbolic partial differential equations with random coefficients are discussed. Such random partial differential equations appear for instance in traffic flow problems as well as in many physical processes in random media. Two types of models are presented: The first has a time-dependent coefficient modeled by the Ornstein--Uhlenbeck process. The second has a random field coefficient with a given covariance in space. For the former a formula for the exact solution in terms of moments is derived. In both cases stable numerical schemes are introduced to solve these random partial differential equations. Simulation results including convergence studies conclude the theoretical findings

    A Hybrid Monte Carlo Ant Colony Optimization Approach for Protein Structure Prediction in the HP Model

    Full text link
    The hydrophobic-polar (HP) model has been widely studied in the field of protein structure prediction (PSP) both for theoretical purposes and as a benchmark for new optimization strategies. In this work we introduce a new heuristics based on Ant Colony Optimization (ACO) and Markov Chain Monte Carlo (MCMC) that we called Hybrid Monte Carlo Ant Colony Optimization (HMCACO). We describe this method and compare results obtained on well known HP instances in the 3 dimensional cubic lattice to those obtained with standard ACO and Simulated Annealing (SA). All methods were implemented using an unconstrained neighborhood and a modified objective function to prevent the creation of overlapping walks. Results show that our methods perform better than the other heuristics in all benchmark instances.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    Simple Technique for source reflection coefficient measurement while characterizing active devices

    Get PDF
    This paper describes a simple, yet rigorous technique for fast and accurate determination of the source reflection coefficient during the characterization of microwave active devices. The solution consists in measuring the waves at the DUT reference plane under two different bias conditions. Since the DUT small signal impedance value depends on the bias voltage, the waves at the DUT input port changes as well. We proved that their measurements give enough information to compute the source reflection coefficient with accuracy suitable for most applications. The correction for systematic errors is based in the traditional error-box model and it does not require any exotic calibration procedures. Experimental results are presented and compared to data obtained with more traditional technique

    Stable Solution of the Simplest Spin Model for Inverse Freezing

    Full text link
    We analyze the Blume-Emery-Griffiths model with disordered magnetic interaction that displays the inverse freezing phenomenon. The behavior of this spin-1 model in crystal field is studied throughout the phase diagram and the transition and spinodal lines for the model are computed using the Full Replica Symmetry Breaking Ansatz that always yields a thermodynamically stable phase. We compare the results both with the formulation of the same model in terms of Ising spins on lattice gas, where no reentrance takes place, and with the model with generalized spin variables recently introduced by Schupper and Shnerb [Phys. Rev. Lett. {\bf 93} 037202 (2004)], for which the reentrance is enhanced as the ratio between the degeneracy of full to empty sites increases. The simplest version of all these models, known as the Ghatak-Sherrington model, turns out to hold all the general features characterizing an inverse transition to an amorphous phase, including the right thermodynamic behavior.Comment: 4 pages, 4 figure

    Robust regression with imprecise data

    Get PDF
    We consider the problem of regression analysis with imprecise data. By imprecise data we mean imprecise observations of precise quantities in the form of sets of values. In this paper, we explore a recently introduced likelihood-based approach to regression with such data. The approach is very general, since it covers all kinds of imprecise data (i.e. not only intervals) and it is not restricted to linear regression. Its result consists of a set of functions, reflecting the entire uncertainty of the regression problem. Here we study in particular a robust special case of the likelihood-based imprecise regression, which can be interpreted as a generalization of the method of least median of squares. Moreover, we apply it to data from a social survey, and compare it with other approaches to regression with imprecise data. It turns out that the likelihood-based approach is the most generally applicable one and is the only approach accounting for multiple sources of uncertainty at the same time
    • …
    corecore