2 research outputs found

    Scintillation Properties of CsPbBr<sub>3</sub> Nanocrystals Prepared by Ligand-Assisted Reprecipitation and Dual Effect of Polyacrylate Encapsulation toward Scalable Ultrafast Radiation Detectors

    No full text
    Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymeric hosts are gaining attention as scalable and low-cost scintillation detectors for technologically relevant applications. Despite rapid progress, little is currently known about the scintillation properties and stability of LHP-NCs prepared by the ligand assisted reprecipitation (LARP) method, which allows mass scalability at room temperature unmatched by any other type of nanostructure, and the implications of incorporating LHP-NCs into polyacrylate hosts are still largely debated. Here, we show that LARP-synthesized CsPbBr3 NCs are comparable to particles from hot-injection routes and unravel the dual effect of polyacrylate incorporation, where the partial degradation of LHP-NCs luminescence is counterbalanced by the passivation of electron-poor defects by the host acrylic groups. Experiments on NCs with tailored surface defects show that the balance between such antithetical effects of polymer embedding is determined by the surface defect density of the NCs and provide guidelines for further material optimization

    Ultrafast Nanocomposite Scintillators Based on Cd-Enhanced CsPbCl<sub>3</sub> Nanocrystals in Polymer Matrix

    No full text
    Lead halide perovskite nanocrystals (LHP-NCs) embedded in polymer matrices are gaining traction as next-generation radiation detectors. While progress has been made on green-emitting CsPbBr3 NCs, scant attention has been given to the scintillation properties of CsPbCl3 NCs, which emit size-tunable UV-blue light matching the peak efficiency of ultrafast photodetectors. In this study, we explore the scintillation characteristics of CsPbCl3 NCs produced through a scalable method and treated with CdCl2. Spectroscopic, radiometric, and theoretical analyses on both untreated and treated NCs uncover deep hole trap states due to surface undercoordinated chloride ions, eliminated by Pb to Cd substitution. This yields near-perfect efficiency and resistance to polyacrylate mass polymerization. Radiation hardness tests demonstrate stability to high γ doses, while time-resolved experiments reveal ultrafast radioluminescence with an average lifetime as short as 210 ps. These findings enhance our comprehension of LHP NCs’ scintillation properties, positioning CsPbCl3 as a promising alternative to conventional fast scintillators
    corecore