69 research outputs found

    Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison

    Get PDF
    Background: Due to their favorable physical and biological properties, helium ion beams are increasingly considered a promising alternative to proton beams for radiation therapy. Hence, this work aims at comparing in-silico the treatment of brain and ocular meningiomas with protons and helium ions, using for the first time a dedicated Monte Carlo (MC) based treatment planning engine (MCTP) thoroughly validated both in terms of physical and biological models. Methods: Starting from clinical treatment plans of four patients undergoing proton therapy with a fixed relative biological effectiveness (RBE) of 1.1 and a fraction dose of 1.8 Gy(RBE), new treatment plans were optimized with MCTP for both protons (with variable and fixed RBE) and helium ions (with variable RBE) under the same constraints derived from the initial clinical plans. The resulting dose distributions were dosimetrically compared in terms of dose volume histograms (DVH) parameters for the planning target volume (PTV) and the organs at risk (OARs), as well as dose difference maps. Results: In most of the cases helium ion plans provided a similar PTV coverage as protons with a consistent trend of superior OAR sparing. The latter finding was attributed to the ability of helium ions to offer sharper distal and lateral dose fall-offs, as well as a more favorable differential RBE variation in target and normal tissue. Conclusions: Although more studies are needed to investigate the clinical potential of helium ions for different tumour entities, the results of this work based on an experimentally validated MC engine support the promise of this modality with state-of-the-art pencil beam scanning delivery, especially in case of tumours growing in close proximity of multiple OARs such as meningiomas

    Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios

    Get PDF
    Background: In proton radiation therapy a constant relative biological effectiveness (RBE) of 1.1 is usually assumed. However, biological experiments have evidenced RBE dependencies on dose level, proton linear energy transfer (LET) and tissue type. This work compares the predictions of three of the main radio-biological models proposed in the literature by Carabe-Fernandez, Wedenberg, Scholz and coworkers. Methods: Using the chosen models, a spread-out Bragg peak (SOBP) as well as two exemplary clinical cases (single field and two fields) for cranial proton irradiation, all delivered with state-of-the-art pencil-beam scanning, have been analyzed in terms of absorbed dose, dose-averaged LET (LETD), RBE-weighted dose (D-RBE) and biological range shift distributions. Results: In the systematic comparison of RBE predictions by the three models we could show different levels of agreement depending on (alpha/beta)(x) and LET values. The SOBP study emphasizes the variation of LETD and RBE not only as a function of depth but also of lateral distance from the central beam axis. Application to clinical-like scenario shows consistent discrepancies from the values obtained for a constant RBE of 1.1, when using a variable RBE scheme for proton irradiation in tissues with low (alpha/beta)(x), regardless of the model. Biological range shifts of 0.6-2.4 mm (for high (alpha/beta)(x)) and 3.0 -5.4 mm (for low (alpha/beta)(x)) were found from the fall-off analysis of individual profiles of RBE-weighted fraction dose along the beam penetration depth. Conclusions: Although more experimental evidence is needed to validate the accuracy of the investigated models and their input parameters, their consistent trend suggests that their main RBE dependencies (dose, LET and (alpha/beta)(x)) should be included in treatment planning systems. In particular, our results suggest that simpler models based on the linear-quadratic formalism and LETD might already be sufficient to reproduce important RBE dependencies for re-evaluation of plans optimized with the current RBE = 1.1 approximation. This approach would be a first step forward to consider RBE variations in proton therapy, thus enabling a more robust choice of biological dose delivery. The latter could in turn impact clinical outcome, especially in terms of reduced toxicities for tumors adjacent to organs at risk

    Long term results of postoperative Intensity-Modulated Radiation Therapy (IMRT) in the treatment of Squamous Cell Carcinoma (SCC) located in the oropharynx or oral cavity

    Get PDF
    Background: To report our long-term results with postoperative intensity-modulated radiation therapy (IMRT) in patients suffering from squamous-cell carcinoma (SCC) of the oral cavity or oropharynx. Methods: Seventy five patients were retrospectively analyzed. Median age was 58 years and 84 % were male. 76 % of the primaries were located in the oropharynx. Surgery resulted in negative margins (R0) in 64 % of the patients while 36 % suffered from positive margins (R1). Postoperative stages were as follows: stage1:4 %, stage2:9 %, stage3:17 %, stage4a:69 % with positive nodes in 84 %. Perineural invasion (Pn+) and extracapsular extension (ECE) were present in 7 % and 29 %, respectively. All patients received IMRT using the step-and-shoot approach with a simultaneously integrated boost (SIB) in 84 %. Concurrent systemic therapy was applied to 53 patients, mainly cisplatin weekly. Results: Median follow-up was 55 months (5–150). 13 patients showed locoregional failures (4 isolated local, 4 isolated neck, 5 combined) transferring into 5-year-LRC rates of 85 %. Number of positive lymph nodes (n > 2) and presence of ECE were significantly associated with decreased LRC in univariate analysis, but only the number of nodes remained significant in multivariate analysis. Overall treatment failures occurred in 20 patients (9 locoregional only, 7 distant only, 4 combined), transferring into 3-and 5-year-FFTF rates of 77 % and 75 %, respectively. The 3-and 5-year-OS rates were 80 % and 72 %, respectively. High clinical stage, high N stage, number of positive nodes (n > 2), ECE and Pn1 were significantly associated with worse FFTF and OS in univariate analysis, but only number of nodes remained significant for FFTF in multivariate analysis. Maximum acute toxicity was grade 3 in 64 % and grade 4 in 1 %, mainly hematological or mucositis/dysphagia. Maximum late toxicity was grade 3 in 23 % of the patients, mainly long-term tube feeding dependency. Conclusion: Postoperative IMRT achieved excellent LRC and good OS with acceptable acute and low late toxicity rates. The number of positive nodes (n > 2) was a strong prognostic factor for all endpoints in univariate and the only significant factor for LRC and FFTF in multivariate analysis. Patients with feeding tubes due to postoperative complications had an increased risk for long-term feeding tube dependency

    Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation

    Get PDF
    Background: Hypoxia-induced radioresistance constitutes a major obstacle for a curative treatment of cancer. The aim of this study was to investigate effects of photon and carbon ion irradiation in combination with inhibitors of DNA-Damage Response (DDR) on tumor cell radiosensitivity under hypoxic conditions. Methods: Human non-small cell lung cancer (NSCLC) models, A549 and H1437, were irradiated with dose series of photon and carbon ions under hypoxia (1% O2) vs. normoxic conditions (21% O2). Clonogenic survival was studied after dual combinations of radiotherapy with inhibitors of DNA-dependent Protein Kinase (DNAPKi, M3814) and ATM serine/threonine kinase (ATMi). Results: The OER at 30% survival for photon irradiation of A549 cells was 1.4. The maximal oxygen effect measured as survival ratio was 2.34 at 8 Gy photon irradiation of A549 cells. In contrast, no significant oxygen effect was found after carbon ion irradiation. Accordingly, the relative effect of 6 Gy carbon ions was determined as 3.8 under normoxia and. 4.11 under hypoxia. ATM and DNA-PK inhibitors dose dependently sensitized tumor cells for both radiation qualities. For 100 nM DNAPKi the survival ratio at 4 Gy more than doubled from 1.59 under normoxia to 3.3 under hypoxia revealing a strong radiosensitizing effect under hypoxic conditions. In contrast, this ratio only moderately increased after photon irradiation and ATMi under hypoxia. The most effective treatment was combined carbon ion irradiation and DNA damage repair inhibition. Conclusions: Carbon ions efficiently eradicate hypoxic tumor cells. Both, ATMi and DNAPKi elicit radiosensitizing effects. DNAPKi preferentially sensitizes hypoxic cells to radiotherapy

    Biophysical modeling and experimental validation of relative biological effectiveness (RBE) for 4He ion beam therapy

    Get PDF
    Background: Helium (4He) ion beam therapy provides favorable biophysical characteristics compared to currently administered particle therapies, i.e., reduced lateral scattering and enhanced biological damage to deep-seated tumors like heavier ions, while simultaneously lessened particle fragmentation in distal healthy tissues as observed with lighter protons. Despite these biophysical advantages, raster-scanning 4He ion therapy remains poorly explored e.g., clinical translational is hampered by the lack of reliable and robust estimation of physical and radiobiological uncertainties. Therefore, prior to the upcoming 4He ion therapy program at the Heidelberg Ion-beam Therapy Center (HIT), we aimed to characterize the biophysical phenomena of 4He ion beams and various aspects of the associated models for clinical integration. Methods: Characterization of biological effect for 4He ion beams was performed in both homogenous and patient-like treatment scenarios using innovative models for estimation of relative biological effectiveness (RBE) in silico and their experimental validation using clonogenic cell survival as the gold-standard surrogate. Towards translation of RBE models in patients, the first GPU-based treatment planning system (non-commercial) for raster-scanning 4He ion beams was devised in-house (FRoG). Results: Our data indicate clinically relevant uncertainty of ±5–10% across different model simulations, highlighting their distinct biological and computational methodologies. The in vitro surrogate for highly radio-resistant tissues presented large RBE variability and uncertainty within the clinical dose range. Conclusions: Existing phenomenological and mechanistic/biophysical models were successfully integrated and validated in both Monte Carlo and GPU-accelerated analytical platforms against in vitro experiments, and tested using pristine peaks and clinical fields in highly radio-resistant tissues where models exhibit the greatest RBE uncertainty. Together, these efforts mark an important step towards clinical translation of raster-scanning 4He ion beam therapy to the clinic

    Discontinuation of BRAF/MEK-Directed Targeted Therapy after Complete Remission of Metastatic Melanoma—A Retrospective Multicenter ADOReg Study

    Get PDF
    The advent of BRAF/MEK inhibitors (BRAFi/MEKi) has significantly improved progressionfree (PFS) and overall survival (OS) for patients with advanced BRAF-V600-mutant melanoma. Long-term survivors have been identified particularly among patients with a complete response (CR) to BRAF/MEK-directed targeted therapy (TT). However, it remains unclear which patients who achieved a CR maintain a durable response and whether treatment cessation might be a safe option in these patients. Therefore, this study investigated the impact of treatment cessation on the clinical course of patients with a CR upon BRAF/MEK-directed-TT. We retrospectively selected patients with BRAF-V600-mutant advanced non-resectable melanoma who had been treated with BRAFi ± MEKi therapy and achieved a CR upon treatment out of the multicentric skin cancer registry ADOReg. Data on baseline patient characteristics, duration of TT, treatment cessation, tumor progression (TP) and response to second-line treatments were collected and analyzed. Of 461 patients who received BRAF/MEK-directed TT 37 achieved a CR. TP after initial CR was observed in 22 patients (60%) mainly affecting patients who discontinued TT (n = 22/26), whereas all patients with ongoing TT (n = 11) maintained their CR. Accordingly, patients who discontinued TT had a higher risk of TP compared to patients with ongoing treatment (p < 0.001). However, our data also show that patients who received TT for more than 16 months and who discontinued TT for other reasons than TP or toxicity did not have a shorter PFS compared to patients with ongoing treatment. Response rates to second-line treatment being initiated in 21 patients, varied between 27% for immune-checkpoint inhibitors (ICI) and 60% for BRAFi/MEKi rechallenge. In summary, we identified a considerable number of patients who achieved a CR upon BRAF/MEK-directed TT in this contemporary realworld cohort of patients with BRAF-V600-mutant melanoma. Sustained PFS was not restricted to ongoing TT but was also found in patients who discontinued TT

    MAPKinase inhibition after failure of immune checkpoint blockade in patients with advanced melanoma – an evaluation of the multicenter prospective skin cancer registry ADOREG

    Get PDF
    Objectives: Forty to sixty percent of patients with advanced melanoma show primary resistance to PD-1-based immunotherapy, 30-40% of initial responders also progress. Here, we evaluated the outcome of second-line targeted therapy (TT) after progression on PD-1-based immune checkpoint inhibition (ICI) in BRAFV600-mutated melanoma. In addition, we report data on the activity of re-exposure with PD-1-based regimes. Methods: Patients with advanced (non- resectable stage III or IV, AJCC 2017, 8th edition) melanoma progressing on PD-1-based ICI (nivolumab, pembrolizumab or ipilimumab plus nivolumab) and receiving second-line BRAF plus MEK inhibition were identified from the prospective multicenter skin cancer registry ADOREG. Results: We identified 108 patients with unresectable stage III or stage IV melanoma progressing on first-line ICI (nivolumab, pembrolizumab or ipilimumab plus nivolumab) and receiving second-line combined BRAF/MEK inhibition. Seventy- three percent of the cohort presented with primary PD-1 resistant disease. Median progression-free survival ( PFS) on ICI was 2.6 (95% CI 2.2-2.9) months. Median PFS on subsequent TT was 6.6 (95% CI 5.4 -7.8) months. Median OS from start of second-line TT was 16.0 (95% CI 11.2-20.8) months. The 3-year PFS and OS rates on second-line TT were 16% and 30%. The objective response rate (ORR) and disease control rate (DCR) to TT were 42.6% and 55.6%. In patients with brain metastases, the ORR and DCR were 31.4% and 43.1%. Patients without brain metastases showed an ORR and DCR of 52.6% and 66.7%, respectively. Response to first-line ICI was associated with a numerically higher ORR and DCR to second-line TT and improved OS on TT. Twenty-three patients received third-line ICI of whom two patients showed an objective response. Conclusions: BRAF plus MEK inhibition shows meaningful activity and outcome in patients with advanced melanoma resistant to anti-PD-1- based immunotherapy. Rates of long- term benefit and survival in our study were similar to those reported for treatment-naive patients receiving first-line MAPKi

    PSMA-PET/CT-guided salvage radiotherapy in recurrent or persistent prostate cancer and PSA < 0.2 ng/ml.

    Get PDF
    PURPOSE The purpose of this retrospective, multicenter study was to assess efficacy of PSMA-PET/CT-guided salvage radiotherapy (sRT) in patients with recurrent or persistent PSA after primary surgery and PSA levels < 0.2 ng/ml. METHODS The study included patients from a pooled cohort (n = 1223) of 11 centers from 6 countries. Patients with PSA levels > 0.2 ng/ml prior to sRT or without sRT to the prostatic fossa were excluded. The primary study endpoint was biochemical recurrence-free survival (BRFS) and BR was defined as PSA nadir after sRT + 0.2 ng/ml. Cox regression analysis was performed to assess the impact of clinical parameters on BRFS. Recurrence patterns after sRT were analyzed. RESULTS The final cohort consisted of 273 patients; 78/273 (28.6%) and 48/273 (17.6%) patients had local or nodal recurrence on PET/CT. The most frequently applied sRT dose to the prostatic fossa was 66-70 Gy (n = 143/273, 52.4%). SRT to pelvic lymphatics was delivered in 87/273 (31.9%) patients and androgen deprivation therapy was given to 36/273 (13.2%) patients. After a median follow-up time of 31.1 months (IQR: 20-44), 60/273 (22%) patients had biochemical recurrence. The 2- and 3-year BRFS was 90.1% and 79.2%, respectively. The presence of seminal vesicle invasion in surgery (p = 0.019) and local recurrences in PET/CT (p = 0.039) had a significant impact on BR in multivariate analysis. In 16 patients, information on recurrence patterns on PSMA-PET/CT after sRT was available and one had recurrent disease inside the RT field. CONCLUSION This multicenter analysis suggests that implementation of PSMA-PET/CT imaging for sRT guidance might be of benefit for patients with very low PSA levels after surgery due to promising BRFS rates and a low number of relapses within the sRT field

    Development and Validation of a Multi-institutional Nomogram of Outcomes for PSMA-PET-Based Salvage Radiotherapy for Recurrent Prostate Cancer.

    Get PDF
    IMPORTANCE Prostate-specific antigen membrane positron-emission tomography (PSMA-PET) is increasingly used to guide salvage radiotherapy (sRT) after radical prostatectomy for patients with recurrent or persistent prostate cancer. OBJECTIVE To develop and validate a nomogram for prediction of freedom from biochemical failure (FFBF) after PSMA-PET-based sRT. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included 1029 patients with prostate cancer treated between July 1, 2013, and June 30, 2020, at 11 centers from 5 countries. The initial database consisted of 1221 patients. All patients had a PSMA-PET scan prior to sRT. Data were analyzed in November 2022. EXPOSURES Patients with a detectable post-radical prostatectomy prostate-specific antigen (PSA) level treated with sRT to the prostatic fossa with or without additional sRT to pelvic lymphatics or concurrent androgen deprivation therapy (ADT) were eligible. MAIN OUTCOMES AND MEASURES The FFBF rate was estimated, and a predictive nomogram was generated and validated. Biochemical relapse was defined as a PSA nadir of 0.2 ng/mL after sRT. RESULTS In the nomogram creation and validation process, 1029 patients (median age at sRT, 70 years [IQR, 64-74 years]) were included and further divided into a training set (n = 708), internal validation set (n = 271), and external outlier validation set (n = 50). The median follow-up was 32 months (IQR, 21-45 months). Based on the PSMA-PET scan prior to sRT, 437 patients (42.5%) had local recurrences and 313 patients (30.4%) had nodal recurrences. Pelvic lymphatics were electively irradiated for 395 patients (38.4%). All patients received sRT to the prostatic fossa: 103 (10.0%) received a dose of less than 66 Gy, 551 (53.5%) received a dose of 66 to 70 Gy, and 375 (36.5%) received a dose of more than 70 Gy. Androgen deprivation therapy was given to 325 (31.6%) patients. On multivariable Cox proportional hazards regression analysis, pre-sRT PSA level (hazard ratio [HR], 1.80 [95% CI, 1.41-2.31]), International Society of Urological Pathology grade in surgery specimen (grade 5 vs 1+2: HR, 2.39 [95% CI, 1.63-3.50], pT stage (pT3b+pT4 vs pT2: HR, 1.91 [95% CI, 1.39-2.67]), surgical margins (R0 vs R1+R2+Rx: HR, 0.60 [95% CI, 0.48-0.78]), ADT use (HR, 0.49 [95% CI, 0.37-0.65]), sRT dose (>70 vs ≤66 Gy: HR, 0.44 [95% CI, 0.29-0.67]), and nodal recurrence detected on PSMA-PET scans (HR, 1.42 [95% CI, 1.09-1.85]) were associated with FFBF. The mean (SD) nomogram concordance index for FFBF was 0.72 (0.06) for the internal validation cohort and 0.67 (0.11) in the external outlier validation cohort. CONCLUSIONS AND RELEVANCE This cohort study of patients with prostate cancer presents an internally and externally validated nomogram that estimated individual patient outcomes after PSMA-PET-guided sRT
    corecore