404 research outputs found

    Restoring the Physical Meaning of Metamaterial Constitutive Parameters

    Full text link
    Metamaterial homogenization is often based on implicit assumptions inspired to natural material models. Retrieved effective permittivity and permeability, however, are often non-physical, especially near the array resonances, of most interest for metamaterial applications. We explain here the nature of typical homogenization artifacts, relating them to an inherent form of magneto-electric coupling associated with the finite phase velocity along metamaterial arrays. Our findings allow restoring the proper definition and physical meaning of local constitutive parameters for metamaterials.Comment: 15 pages, 5 figure

    A Surface Admittance Equivalence Principle for Non-Radiating and Cloaking Problems

    Full text link
    In this paper, we address non-radiating and cloaking problems exploiting the surface equivalence principle, by imposing at any arbitrary boundary the control of the admittance discontinuity between the overall object (with or without cloak) and the background. After a rigorous demonstration, we apply this model to a non-radiating problem, appealing for anapole modes and metamolecules modeling, and to a cloaking problem, appealing for non-Foster metasurface design. A straightforward analytical condition is obtained for controlling the scattering of a dielectric object over a surface boundary of interest. Previous quasi-static results are confirmed and a general closed-form solution beyond the subwavelength regime is provided. In addition, this formulation can be extended to other wave phenomena once the proper admittance function is defined (thermal, acoustics, elastomechanics, etc.).Comment: 7 page

    Coherent Virtual Absorption Based on Complex Zero Excitation for Ideal Light Capturing

    Full text link
    Absorption of light is directly associated with dissipative processes in a material. In suitably tailored resonators, a specific level of dissipation can support coherent perfect absorption, the time-reversed analogue of lasing, which enables total absorption and zero scattering in open cavities. On the contrary, the scattering zeros of lossless objects strictly occur at complex frequencies. While usually considered non-physical due to their divergent response in time, these zeros play a crucial role in the overall scattering dispersion. Here, we introduce the concept of coherent virtual absorption, accessing these modes by temporally shaping the incident waveform. We show that engaging these complex zeros enables storing and releasing the electromagnetic energy at will within a lossless structure for arbitrary amounts of time, under the control of the impinging field. The effect is robust with respect to inevitable material dissipation and can be realized in systems with any number of input ports. The observed effect may have important implications for flexible control of light propagation and storage, low-energy memory, and optical modulation.Comment: To be published in Optic

    Optical Nanotransmission Lines: Synthesis of Planar Left-Handed Metamaterials in the Infrared and Visible Regimes

    Get PDF
    Following our recent theoretical development of the concept of nano-inductors, nano-capacitors and nano-resistors at optical frequencies and the possibility of synthesizing more complex nano-scale circuits, here we theoretically investigate in detail the problem of optical nano-transmission-lines (NTL) that can be envisioned by properly joining together arrays of these basic nano-scale circuit elements. We show how, in the limit in which these basic circuit elements are closely packed together, the NTLs can be regarded as stacks of plasmonic and non-plasmonic planar slabs, which may be designed to effectively exhibit the properties of planar metamaterials with forward (right-handed) or backward (left-handed) operation. With the proper design, negative refraction and left-handed propagation are shown to be possible in these planar plasmonic guided-wave structures, providing possibilities for sub-wavelength focusing and imaging in planar optics, and laterally-confined waveguiding at IR and visible frequencies. The effective material parameters for such NTLs are derived, and the connection and analogy between these optical NTLs and the double-negative and double-positive metamaterials are also explored. Physical insights and justification for the results are also presented.Comment: 26 pages, 12 figures, accepted for publication in JOSA B, scheduled to appear March 200

    FDTD analysis of the tunneling and growing exponential in a pair of epsilon-negative and mu-negative slabs

    Full text link
    Pairing together material slabs with opposite signs for the real parts of their constitutive parameters has been shown to lead to interesting and unconventional properties that are not otherwise observable for single slabs. One such case was demonstrated analytically for the conjugate (i.e., complementary) pairing of infinite planar slabs of epsilon-negative (ENG) and mu-negative (MNG) media [A. Alu, and N. Engheta, IEEE Trans. Antennas Prop., 51, 2558 (2003)]. There it was shown that when these two slabs are juxtaposed and excited by an incident plane wave, resonance, complete tunneling, total transparency and reconstruction of evanescent waves may occur in the steady-state regime under a monochromatic excitation, even though each of the two slabs by itself is essentially opaque to the incoming radiation. This may lead to virtual imagers with sub-wavelength resolution and other anomalous phenomena overcoming the physical limit of diffraction. Here we explore how a transient sinusoidal signal that starts at t = 0 interacts with such an ENG-MNG pair of finite size using an FDTD technique. Multiple reflections and transmissions at each interface are shown to build up to the eventual steady state response of the pair, and during this process one can observe how the growing exponential phenomenon may actually occur inside this bilayer.Comment: 14 pages, 9 figures, submitted to Phys Rev
    corecore