2 research outputs found

    Increased body mass index is associated with a global and distributed decrease in white matter microstructural integrity.

    No full text
    <p>OBJECTIVE: Obesity and decreased physical health are linked to deficits in several cognitive domains. The broad range of cognitive problems linked to obesity suggests a global mechanism that may interfere with multiple neural systems. We examined how variation in body mass index (BMI) is associated with the microstructural integrity of fiber connections in the human brain.</p> <p>METHODS: White matter structure was measured using diffusion tensor imaging in 28 participants (mean age = 30 years) with BMI scores ranging from normal weight to obese (19.5-45.7 kg/m(2)) based on standard BMI criteria.</p> <p>RESULTS: Using a whole-brain voxelwise analysis, we found that, across participants, the fractional anisotropy of white matter voxels parametrically decreased with increasing BMI (63% of white matter voxels). Midbrain and brainstem tracts were among the pathways most strongly associated with obesity (r = -0.18 to -0.33, df = 27, all p values < .05). We also observed a weaker overall diffusion signal in individuals with higher BMI than controls with normal weight (r = -0.14 to -0.71, df = 27, for 67% of fiber pathways tested, all p values < .05). After controlling for this decrease in general diffusivity, we found that decreases in fractional anisotropy stemmed from both a decrease in axial diffusivity (p < .05) and an increase in radial diffusivity (p < .05).</p> <p>CONCLUSIONS: Our results show that increased BMI is globally associated with a reduction in white matter integrity throughout the brain, elucidating a potential mechanism by which changes in physical health may influence cognitive health.</p

    Competing physiological pathways link individual differences in weight and abdominal adiposity to white matter microstructure.

    No full text
    <p>Being overweight or obese is associated with reduced white matter integrity throughout the brain. It is not yet clear which physiological systems mediate the association between inter-individual variation in adiposity and white matter. We tested whether composite indicators of cardiovascular, lipid, glucose, and inflammatory factors would mediate the adiposity-related variation in white matter microstructure, measured with diffusion tensor imaging on a group of neurologically healthy adults (N=155). A composite factor representing adiposity (comprised of body mass index and waist circumference) was associated with smaller fractional anisotropy and greater radial diffusivity throughout the brain, a pattern previously linked to myelin structure changes in non-human animal models. A similar global negative association was found for factors representing inflammation and, to a lesser extent, glucose regulation. In contrast, factors for blood pressure and dyslipidemia had positive associations with white matter in isolated brain regions. Taken together, these competing influences on the diffusion signal were significant mediators linking adiposity to white matter and explained up to fifty-percent of the adiposity-white matter variance. These results provide the first evidence for contrasting physiological pathways, a globally distributed immunity-linked negative component and a more localized vascular-linked positive component, that associate adiposity to individual differences in the microstructure of white matter tracts in otherwise healthy adults.</p
    corecore